我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是一个广度搜索,通过这个“迷宫”的位置寻找最短路径(一系列轰炸)。不,我不能证明没有更快的算法,抱歉。

#!/usr/bin/env python

M = ((1,2,3,4),
     (2,3,4,5),
     (5,2,7,4),
     (2,3,5,8))

def eachPossibleMove(m):
  for y in range(1, len(m)-1):
    for x in range(1, len(m[0])-1):
      if (0 == m[y-1][x-1] == m[y-1][x] == m[y-1][x+1] ==
               m[y][x-1]   == m[y][x]   == m[y][x+1] ==
               m[y+1][x-1] == m[y+1][x] == m[y+1][x+1]):
        continue
      yield x, y

def bomb(m, (mx, my)):
  return tuple(tuple(max(0, m[y][x]-1)
      if mx-1 <= x <= mx+1 and my-1 <= y <= my+1
      else m[y][x]
      for x in range(len(m[y])))
    for y in range(len(m)))

def findFirstSolution(m, path=[]):
#  print path
#  print m
  if sum(map(sum, m)) == 0:  # empty?
    return path
  for move in eachPossibleMove(m):
    return findFirstSolution(bomb(m, move), path + [ move ])

def findShortestSolution(m):
  black = {}
  nextWhite = { m: [] }
  while nextWhite:
    white = nextWhite
    nextWhite = {}
    for position, path in white.iteritems():
      for move in eachPossibleMove(position):
        nextPosition = bomb(position, move)
        nextPath = path + [ move ]
        if sum(map(sum, nextPosition)) == 0:  # empty?
          return nextPath
        if nextPosition in black or nextPosition in white:
          continue  # ignore, found that one before
        nextWhite[nextPosition] = nextPath

def main(argv):
  if argv[1] == 'first':
    print findFirstSolution(M)
  elif argv[1] == 'shortest':
    print findShortestSolution(M)
  else:
    raise NotImplementedError(argv[1])

if __name__ == '__main__':
  import sys
  sys.exit(main(sys.argv))

其他回答

评价函数,总和:

int f (int ** matrix, int width, int height, int x, int y)
{
    int m[3][3] = { 0 };

    m[1][1] = matrix[x][y];
    if (x > 0) m[0][1] = matrix[x-1][y];
    if (x < width-1) m[2][1] = matrix[x+1][y];

    if (y > 0)
    {
        m[1][0] = matrix[x][y-1];
        if (x > 0) m[0][0] = matrix[x-1][y-1];
        if (x < width-1) m[2][0] = matrix[x+1][y-1];
    }

    if (y < height-1)
    {
        m[1][2] = matrix[x][y+1];
        if (x > 0) m[0][2] = matrix[x-1][y+1];
        if (x < width-1) m[2][2] = matrix[x+1][y+1];
    }

    return m[0][0]+m[0][1]+m[0][2]+m[1][0]+m[1][1]+m[1][2]+m[2][0]+m[2][1]+m[2][2];
}

目标函数:

Point bestState (int ** matrix, int width, int height)
{
    Point p = new Point(0,0);
    int bestScore = 0;
    int b = 0;

    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
        {
            b = f(matrix,width,height,i,j);

            if (b > bestScore)
            {
                bestScore = best;
                p = new Point(i,j);
            }
        }

    retunr p;
}

破坏功能:

void destroy (int ** matrix, int width, int height, Point p)
{
    int x = p.x;
    int y = p.y;

    if(matrix[x][y] > 0) matrix[x][y]--;
    if (x > 0) if(matrix[x-1][y] > 0) matrix[x-1][y]--;
    if (x < width-1) if(matrix[x+1][y] > 0) matrix[x+1][y]--;

    if (y > 0)
    {
        if(matrix[x][y-1] > 0) matrix[x][y-1]--;
        if (x > 0) if(matrix[x-1][y-1] > 0) matrix[x-1][y-1]--;
        if (x < width-1) if(matrix[x+1][y-1] > 0) matrix[x+1][y-1]--;
    }

    if (y < height-1)
    {
        if(matrix[x][y] > 0) matrix[x][y+1]--;
        if (x > 0) if(matrix[x-1][y+1] > 0) matrix[x-1][y+1]--;
        if (x < width-1) if(matrix[x+1][y+1] > 0) matrix[x+1][y+1]--;
    }
}

目标函数:

bool isGoal (int ** matrix, int width, int height)
{
    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
            if (matrix[i][j] > 0)
                return false;
    return true;
}

线性最大化函数:

void solve (int ** matrix, int width, int height)
{
    while (!isGoal(matrix,width,height))
    {
        destroy(matrix,width,height, bestState(matrix,width,height));
    }
}

这不是最优的,但可以通过找到更好的评价函数来优化。

. .但是考虑到这个问题,我在想一个主要的问题是在0中间的某个点上得到废弃的数字,所以我要采取另一种方法。这是支配最小值为零,然后试图转义零,这导致一般的最小现有值(s)或这样

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。

这是对第一个问题的回答。我没有注意到他改变了参数。

创建一个所有目标的列表。根据掉落物品(掉落物品本身和所有邻居)影响的正数值的数量为目标分配一个值。最高值是9。

根据受影响目标的数量(降序)对目标进行排序,对每个受影响目标的和进行二次降序排序。

向排名最高的目标投掷炸弹,然后重新计算目标,直到所有目标值都为零。

同意,这并不总是最优的。例如,

100011
011100
011100
011100
000000
100011

这种方法需要5枚炸弹才能清除。最理想的情况是,你可以在4分钟内完成。不过,很 非常接近,没有回头路。在大多数情况下,这将是最优的,或者非常接近。

使用原来的问题数,该方法解决28个炸弹。

添加代码来演示这种方法(使用带有按钮的表单):

         private void button1_Click(object sender, EventArgs e)
    {
        int[,] matrix = new int[10, 10] {{5, 20, 7, 1, 9, 8, 19, 16, 11, 3}, 
                                         {17, 8, 15, 17, 12, 4, 5, 16, 8, 18},
                                         { 4, 19, 12, 11, 9, 7, 4, 15, 14, 6},
                                         { 17, 20, 4, 9, 19, 8, 17, 2, 10, 8},
                                         { 3, 9, 10, 13, 8, 9, 12, 12, 6, 18}, 
                                         {16, 16, 2, 10, 7, 12, 17, 11, 4, 15},
                                         { 11, 1, 15, 1, 5, 11, 3, 12, 8, 3},
                                         { 7, 11, 16, 19, 17, 11, 20, 2, 5, 19},
                                         { 5, 18, 2, 17, 7, 14, 19, 11, 1, 6},
                                         { 13, 20, 8, 4, 15, 10, 19, 5, 11, 12}};


        int value = 0;
        List<Target> Targets = GetTargets(matrix);
        while (Targets.Count > 0)
        {
            BombTarget(ref matrix, Targets[0]);
            value += 1;
            Targets = GetTargets(matrix);
        }
        Console.WriteLine( value);
        MessageBox.Show("done: " + value);
    }

    private static void BombTarget(ref int[,] matrix, Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[a, b] > 0)
                        {
                            matrix[a, b] -= 1;
                        }
                    }
                }
            }
        }
        Console.WriteLine("Dropped bomb on " + t.x + "," + t.y);
    }

    private static List<Target> GetTargets(int[,] matrix)
    {
        List<Target> Targets = new List<Target>();
        int width = matrix.GetUpperBound(0);
        int height = matrix.GetUpperBound(1);
        for (int x = 0; x <= width; x++)
        {
            for (int y = 0; y <= height; y++)
            {
                Target t = new Target();
                t.x = x;
                t.y = y;
                SetTargetValue(matrix, ref t);
                if (t.value > 0) Targets.Add(t);
            }
        }
        Targets = Targets.OrderByDescending(x => x.value).ThenByDescending( x => x.sum).ToList();
        return Targets;
    }

    private static void SetTargetValue(int[,] matrix, ref Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[ a, b] > 0)
                        {
                            t.value += 1;
                            t.sum += matrix[a,b];
                        }

                    }
                }
            }
        }

    }

你需要的一个类:

        class Target
    {
        public int value;
        public int sum;
        public int x;
        public int y;
    }

所有这些问题都归结为计算编辑距离。简单地计算给定矩阵和零矩阵之间的Levenshtein距离的变体,其中编辑被轰炸替换,使用动态编程来存储中间数组之间的距离。我建议使用矩阵的哈希作为键。在pseudo-Python:

memo = {}

def bomb(matrix,i,j):
    # bomb matrix at i,j

def bombsRequired(matrix,i,j):
    # bombs required to zero matrix[i,j]

def distance(m1, i, len1, m2, j, len2):
    key = hash(m1)
    if memo[key] != None: 
        return memo[key]

    if len1 == 0: return len2
    if len2 == 0: return len1

    cost = 0
    if m1 != m2: cost = m1[i,j]
    m = bomb(m1,i,j)
    dist = distance(str1,i+1,len1-1,str2,j+1,len2-1)+cost)
    memo[key] = dist
    return dist

这是我的解决方案。由于时间有限,我不会用代码写出来,但我相信这应该每次都能产生最优的移动数量——尽管我不确定它在寻找要轰炸的点时是否有效。

首先,正如@Luka Rahne在一条评论中所说的,你轰炸的顺序并不重要,重要的是组合。

其次,正如许多人所说的那样,从角的对角线上轰炸1是最优的,因为它接触的点比角多。

这就生成了我的算法版本的基础: 我们可以在第一个或最后一个炸掉拐角的1-off,这没有关系(理论上) 我们首先破坏这些,因为它可以让后面的决定更容易(在实践中) 我们轰炸影响最大的点,同时轰炸那些角落。

让我们将阻力点定义为棋盘上具有最多不可炸点+周围0数量最多的点

非爆炸点可以定义为在我们正在研究的黑板的当前范围内不存在的点。

我还将定义4个处理范围的边界: 上=0,左=0,下=k,右=j。 (起始值)

最后,我将最优炸弹定义为投掷在与阻力点相邻的点上的炸弹,并接触(1)最高值的阻力点和(2)可能的最大数量的点。

关于方法,很明显我们正在从外到内的工作。我们将能够同时与4架“轰炸机”一起工作。

第一个阻力点显然是我们的弯道。“边界外”的点是不可轰炸的(每个角落的范围外都有5个点)。所以我们先在对角线上炸一个角。

算法:

找到4个最佳炸弹点。 如果一个炸弹点正在轰炸一个接触2个边界(即一个角)的阻力点,则一直轰炸到该点为0。否则,逐个轰炸,直到其中一个触及最佳轰炸点的阻力点为0。 对于每个边界: 如果(sum(bound)==0)前进界

重复以上步骤,直到上=下,左=右

稍后我将尝试编写实际代码