我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

你的新问题,有跨行不递减的值,很容易解决。

Observe that the left column contains the highest numbers. Therefore, any optimal solution must first reduce this column to zero. Thus, we can perform a 1-D bombing run over this column, reducing every element in it to zero. We let the bombs fall on the second column so they do maximum damage. There are many posts here dealing with the 1D case, I think, so I feel safe in skipping that case. (If you want me to describe it, I can.). Because of the decreasing property, the three leftmost columns will all be reduced to zero. But, we will provably use a minimum number of bombs here because the left column must be zeroed.

现在,一旦左边的列归零,我们只要剪掉最左边的三列现在归零,然后对现在化简的矩阵重复这一步骤。这必须给我们一个最优的解决方案,因为在每个阶段我们使用可证明的最少数量的炸弹。

其他回答

为了尽量减少炸弹的数量,我们必须最大化每个炸弹的效果。要做到这一点,每一步我们都要选择最好的目标。对于每一个点,它和它的八个邻居的总和,可以被用作轰炸这一点的效率量。这将提供接近最佳的炸弹序列。

UPD:我们还应该考虑到零的数量,因为轰炸它们效率很低。事实上,问题是最小化击中零的数量。但我们不知道每一步如何使我们更接近这个目标。我同意这个问题是np完全的。我建议用贪婪的方法,它会给出一个接近真实的答案。

这是对第一个问题的回答。我没有注意到他改变了参数。

创建一个所有目标的列表。根据掉落物品(掉落物品本身和所有邻居)影响的正数值的数量为目标分配一个值。最高值是9。

根据受影响目标的数量(降序)对目标进行排序,对每个受影响目标的和进行二次降序排序。

向排名最高的目标投掷炸弹,然后重新计算目标,直到所有目标值都为零。

同意,这并不总是最优的。例如,

100011
011100
011100
011100
000000
100011

这种方法需要5枚炸弹才能清除。最理想的情况是,你可以在4分钟内完成。不过,很 非常接近,没有回头路。在大多数情况下,这将是最优的,或者非常接近。

使用原来的问题数,该方法解决28个炸弹。

添加代码来演示这种方法(使用带有按钮的表单):

         private void button1_Click(object sender, EventArgs e)
    {
        int[,] matrix = new int[10, 10] {{5, 20, 7, 1, 9, 8, 19, 16, 11, 3}, 
                                         {17, 8, 15, 17, 12, 4, 5, 16, 8, 18},
                                         { 4, 19, 12, 11, 9, 7, 4, 15, 14, 6},
                                         { 17, 20, 4, 9, 19, 8, 17, 2, 10, 8},
                                         { 3, 9, 10, 13, 8, 9, 12, 12, 6, 18}, 
                                         {16, 16, 2, 10, 7, 12, 17, 11, 4, 15},
                                         { 11, 1, 15, 1, 5, 11, 3, 12, 8, 3},
                                         { 7, 11, 16, 19, 17, 11, 20, 2, 5, 19},
                                         { 5, 18, 2, 17, 7, 14, 19, 11, 1, 6},
                                         { 13, 20, 8, 4, 15, 10, 19, 5, 11, 12}};


        int value = 0;
        List<Target> Targets = GetTargets(matrix);
        while (Targets.Count > 0)
        {
            BombTarget(ref matrix, Targets[0]);
            value += 1;
            Targets = GetTargets(matrix);
        }
        Console.WriteLine( value);
        MessageBox.Show("done: " + value);
    }

    private static void BombTarget(ref int[,] matrix, Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[a, b] > 0)
                        {
                            matrix[a, b] -= 1;
                        }
                    }
                }
            }
        }
        Console.WriteLine("Dropped bomb on " + t.x + "," + t.y);
    }

    private static List<Target> GetTargets(int[,] matrix)
    {
        List<Target> Targets = new List<Target>();
        int width = matrix.GetUpperBound(0);
        int height = matrix.GetUpperBound(1);
        for (int x = 0; x <= width; x++)
        {
            for (int y = 0; y <= height; y++)
            {
                Target t = new Target();
                t.x = x;
                t.y = y;
                SetTargetValue(matrix, ref t);
                if (t.value > 0) Targets.Add(t);
            }
        }
        Targets = Targets.OrderByDescending(x => x.value).ThenByDescending( x => x.sum).ToList();
        return Targets;
    }

    private static void SetTargetValue(int[,] matrix, ref Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[ a, b] > 0)
                        {
                            t.value += 1;
                            t.sum += matrix[a,b];
                        }

                    }
                }
            }
        }

    }

你需要的一个类:

        class Target
    {
        public int value;
        public int sum;
        public int x;
        public int y;
    }

对于更新后的问题,简单的贪心算法可以得到最优结果。

向单元格A[1,1]投掷A[0,0]炸弹,然后向单元格A[2,1]投掷A[1,0]炸弹,并继续向下此过程。要清除左下角,向单元格A[n -2,1]投掷max(A[n -1,0], A[n -2,0], A[n -3,0])炸弹。这将完全清除前3列。

用同样的方法清除第3、4、5列,然后是第6、7、8列,等等。

不幸的是,这并不能帮助找到最初问题的解决方案。


“更大”的问题(没有“非增加”约束)可能被证明是np困难的。这是证明的草图。

假设我们有一个度为3的平面图形。我们来求这个图的最小顶点覆盖。根据维基百科的文章,这个问题对于3次以下的平面图形是np困难的。这可以通过平面3SAT的简化来证明。平面3SAT的硬度由3SAT降低而成。这两个证明都在Erik Demaine教授最近的“算法下界”讲座(第7和第9讲)中提出。

如果我们分割原始图的一些边(图中左边的图),每条边都有偶数个额外的节点,结果图(图中右边的图)应该对原始顶点具有完全相同的最小顶点覆盖。这样的转换允许将图顶点对齐到网格上的任意位置。

如果我们将图顶点只放置在偶数行和列上(这样就不会有两条边与一个顶点形成锐角),在有边的地方插入“1”,在其他网格位置插入“0”,我们可以使用原始问题的任何解决方案来找到最小顶点覆盖。

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

Pólya说:“如果你不能解决一个问题,那么有一个更容易解决的问题:找到它。”

显然更简单的问题是一维问题(当网格是单行时)。让我们从最简单的算法开始——贪婪地轰炸最大的目标。什么时候会出问题?

给定11 11,贪婪算法对先炸毁哪个单元格无关。当然,中心单元格更好——它一次将所有三个单元格归零。这就提出了一种新的算法a,“炸弹最小化剩余的总和”。这个算法什么时候会出错?

给定1 1 2 11 1,算法A在轰炸第2,第3或第4单元格之间是无所谓的。但是轰炸第二个单元格,留下0 0 11 11比轰炸第三个单元格,留下10 10 10 10 1好。如何解决这个问题?轰炸第三个单元格的问题是,左边的功和右边的功必须分开做。

“炸弹使剩余的总和最小化,但使左边(我们轰炸的地方)的最小值和右边的最小值最大化”如何?叫这个算法b,这个算法什么时候出错?


编辑:在阅读了评论之后,我同意一个更有趣的问题将是改变一维问题,使其两端连接起来。很乐意看到这方面的进展。