我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

你的新问题,有跨行不递减的值,很容易解决。

Observe that the left column contains the highest numbers. Therefore, any optimal solution must first reduce this column to zero. Thus, we can perform a 1-D bombing run over this column, reducing every element in it to zero. We let the bombs fall on the second column so they do maximum damage. There are many posts here dealing with the 1D case, I think, so I feel safe in skipping that case. (If you want me to describe it, I can.). Because of the decreasing property, the three leftmost columns will all be reduced to zero. But, we will provably use a minimum number of bombs here because the left column must be zeroed.

现在,一旦左边的列归零,我们只要剪掉最左边的三列现在归零,然后对现在化简的矩阵重复这一步骤。这必须给我们一个最优的解决方案,因为在每个阶段我们使用可证明的最少数量的炸弹。

其他回答

这是一个广度搜索,通过这个“迷宫”的位置寻找最短路径(一系列轰炸)。不,我不能证明没有更快的算法,抱歉。

#!/usr/bin/env python

M = ((1,2,3,4),
     (2,3,4,5),
     (5,2,7,4),
     (2,3,5,8))

def eachPossibleMove(m):
  for y in range(1, len(m)-1):
    for x in range(1, len(m[0])-1):
      if (0 == m[y-1][x-1] == m[y-1][x] == m[y-1][x+1] ==
               m[y][x-1]   == m[y][x]   == m[y][x+1] ==
               m[y+1][x-1] == m[y+1][x] == m[y+1][x+1]):
        continue
      yield x, y

def bomb(m, (mx, my)):
  return tuple(tuple(max(0, m[y][x]-1)
      if mx-1 <= x <= mx+1 and my-1 <= y <= my+1
      else m[y][x]
      for x in range(len(m[y])))
    for y in range(len(m)))

def findFirstSolution(m, path=[]):
#  print path
#  print m
  if sum(map(sum, m)) == 0:  # empty?
    return path
  for move in eachPossibleMove(m):
    return findFirstSolution(bomb(m, move), path + [ move ])

def findShortestSolution(m):
  black = {}
  nextWhite = { m: [] }
  while nextWhite:
    white = nextWhite
    nextWhite = {}
    for position, path in white.iteritems():
      for move in eachPossibleMove(position):
        nextPosition = bomb(position, move)
        nextPath = path + [ move ]
        if sum(map(sum, nextPosition)) == 0:  # empty?
          return nextPath
        if nextPosition in black or nextPosition in white:
          continue  # ignore, found that one before
        nextWhite[nextPosition] = nextPath

def main(argv):
  if argv[1] == 'first':
    print findFirstSolution(M)
  elif argv[1] == 'shortest':
    print findShortestSolution(M)
  else:
    raise NotImplementedError(argv[1])

if __name__ == '__main__':
  import sys
  sys.exit(main(sys.argv))

你可以把这个问题表示成整数规划问题。(这只是解决这个问题的一种可能的方法)

有分:

a b c d
e f g h
i j k l
m n o p

我们可以写出16个方程其中以点f为例

f <= ai + bi + ci + ei + fi + gi + ii + ji + ki   

最小化所有索引的总和和整数解。

解当然是这些指标的和。

这可以通过将所有xi设置为边界0来进一步简化,因此在本例中最终得到4+1方程。

问题是没有解决这类问题的简单算法。我不是这方面的专家,但解决这个问题作为线性规划是NP困难。

生成最慢但最简单且无错误的算法,并测试所有有效的可能性。这种情况非常简单(因为结果与炸弹放置的顺序无关)。

创建N次应用bomp的函数 为所有炸弹放置/炸弹计数可能性创建循环(当矩阵==0时停止) 记住最好的解决方案。 在循环的最后,你得到了最好的解决方案 不仅是炸弹的数量,还有它们的位置

代码可以是这样的:

void copy(int **A,int **B,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
       A[i][j]=B[i][j];
    }

bool is_zero(int **M,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
      if (M[i][j]) return 0;
    return 1;
    }

void drop_bomb(int **M,int m,int n,int i,int j,int N)
    {
    int ii,jj;
    ii=i-1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    }

void solve_problem(int **M,int m,int n)
    {
    int i,j,k,max=0;
    // you probably will need to allocate matrices P,TP,TM yourself instead of this:
    int P[m][n],min;             // solution: placement,min bomb count
    int TM[m][n],TP[m][n],cnt;   // temp
    for (i=0;i<m;i++)            // max count of bomb necessary to test
     for (j=0;j<n;j++)
      if (max<M[i][j]) max=M[i][j];
    for (i=0;i<m;i++)            // reset solution
     for (j=0;j<n;j++)
      P[i][j]=max;
    min=m*n*max; 
        copy(TP,P,m,n); cnt=min;

    for (;;)  // generate all possibilities
        {
        copy(TM,M,m,n);
        for (i=0;i<m;i++)   // test solution
         for (j=0;j<n;j++)
          drop_bomb(TM,m,n,TP[i][j]);
        if (is_zero(TM,m,n))// is solution
         if (min>cnt)       // is better solution -> store it
            {
            copy(P,TP,m,n); 
            min=cnt;    
            }
        // go to next possibility
        for (i=0,j=0;;)
            {
            TP[i][j]--;
            if (TP[i][j]>=0) break;
            TP[i][j]=max;
                 i++; if (i<m) break;
            i=0; j++; if (j<n) break;
            break;
            }
        if (is_zero(TP,m,n)) break;
        }
    //result is in P,min
    }

这可以通过很多方式进行优化,……最简单的是用M矩阵重置解,但你需要改变最大值和TP[][]递减代码

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

这是我的解决方案。由于时间有限,我不会用代码写出来,但我相信这应该每次都能产生最优的移动数量——尽管我不确定它在寻找要轰炸的点时是否有效。

首先,正如@Luka Rahne在一条评论中所说的,你轰炸的顺序并不重要,重要的是组合。

其次,正如许多人所说的那样,从角的对角线上轰炸1是最优的,因为它接触的点比角多。

这就生成了我的算法版本的基础: 我们可以在第一个或最后一个炸掉拐角的1-off,这没有关系(理论上) 我们首先破坏这些,因为它可以让后面的决定更容易(在实践中) 我们轰炸影响最大的点,同时轰炸那些角落。

让我们将阻力点定义为棋盘上具有最多不可炸点+周围0数量最多的点

非爆炸点可以定义为在我们正在研究的黑板的当前范围内不存在的点。

我还将定义4个处理范围的边界: 上=0,左=0,下=k,右=j。 (起始值)

最后,我将最优炸弹定义为投掷在与阻力点相邻的点上的炸弹,并接触(1)最高值的阻力点和(2)可能的最大数量的点。

关于方法,很明显我们正在从外到内的工作。我们将能够同时与4架“轰炸机”一起工作。

第一个阻力点显然是我们的弯道。“边界外”的点是不可轰炸的(每个角落的范围外都有5个点)。所以我们先在对角线上炸一个角。

算法:

找到4个最佳炸弹点。 如果一个炸弹点正在轰炸一个接触2个边界(即一个角)的阻力点,则一直轰炸到该点为0。否则,逐个轰炸,直到其中一个触及最佳轰炸点的阻力点为0。 对于每个边界: 如果(sum(bound)==0)前进界

重复以上步骤,直到上=下,左=右

稍后我将尝试编写实际代码