我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

这可能会帮助那些对选择速度算法感兴趣的人;最快的方法是(可能?)拒绝抽样。

只需在单位正方形内生成一个点,并拒绝它,直到它在圆内。如(伪代码),

def sample(r=1):
    while True:
        x = random(-1, 1)
        y = random(-1, 1)
        if x*x + y*y <= 1:
            return (x, y) * r

虽然有时它可能运行不止一次或两次(而且它不是常量时间,也不适合并行执行),但它要快得多,因为它不使用像sin或cos这样复杂的公式。

其他回答

这取决于你对"均匀随机"的定义。这是一个微妙的点,你可以在这里的wiki页面上阅读更多关于它的内容:http://en.wikipedia.org/wiki/Bertrand_paradox_%28probability%29,在这里同样的问题,对“均匀随机”给出不同的解释会给出不同的答案!

根据你如何选择这些点,分布可能会有所不同,即使它们在某种意义上是均匀随机的。

It seems like the blog entry is trying to make it uniformly random in the following sense: If you take a sub-circle of the circle, with the same center, then the probability that the point falls in that region is proportional to the area of the region. That, I believe, is attempting to follow the now standard interpretation of 'uniformly random' for 2D regions with areas defined on them: probability of a point falling in any region (with area well defined) is proportional to the area of that region.

圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。

为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。

或者使用Mehrdad提出的蒙特卡罗方法。

EDIT

要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。

为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。

程序员解决方案:

创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        matrix[x][y] = true;

        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;

      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

位图仅用于解释逻辑。这是没有位图的代码:

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;
      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。

这可能会让你知道为什么你会有这种行为。

在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。

编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。

这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。

这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。

我们记作f(r) = C*r;

这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。

因此,f(r) = 2*r/ r ^2

好,这就是如何得到链接中的公式。

然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。

对f(r)积分得到f(r) = r^2/ r^2

为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)

直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。

这里有一个快速而简单的解决方案。

在(0,1)范围内选择两个随机数,即a和b。如果b < a,则交换它们。你的观点是(b * R * cos(2 *π* a / b), b * R * sin(2 *π* a / b))。

您可以这样考虑这个解决方案。如果你把圆切开,然后把它拉直,你会得到一个直角三角形。把这个三角形缩小,你会得到一个从(0,0)到(1,0)到(1,1)再回到(0,0)的三角形,所有这些变换都会均匀地改变密度。你所做的就是在三角形中随机取一个点然后反过来得到圆中的一个点。