我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

朴素解不起作用的原因是它给了靠近圆中心的点更高的概率密度。换句话说,半径为r/2的圆被选中点的概率为r/2,但它的面积(点的数量)为*r^2/4。

因此,我们希望半径概率密度具有以下性质:

选择半径小于或等于给定r的概率必须与半径为r的圆的面积成正比(因为我们希望在点上有一个均匀的分布,面积越大意味着点越多)。

换句话说,我们希望在[0,r]之间选择半径的概率等于它在圆的总面积中所占的份额。圆的总面积是*R^2,半径为R的圆的面积是*R^2。因此,我们希望在[0,r]之间选择半径的概率为(pi*r^2)/(pi* r^2) = r^2/ r^2。

现在来算算:

The probability of choosing a radius between [0,r] is the integral of p(r) dr from 0 to r (that's just because we add all the probabilities of the smaller radii). Thus we want integral(p(r)dr) = r^2/R^2. We can clearly see that R^2 is a constant, so all we need to do is figure out which p(r), when integrated would give us something like r^2. The answer is clearly r * constant. integral(r * constant dr) = r^2/2 * constant. This has to be equal to r^2/R^2, therefore constant = 2/R^2. Thus you have the probability distribution p(r) = r * 2/R^2

Note: Another more intuitive way to think about the problem is to imagine that you are trying to give each circle of radius r a probability density equal to the proportion of the number of points it has on its circumference. Thus a circle which has radius r will have 2 * pi * r "points" on its circumference. The total number of points is pi * R^2. Thus you should give the circle r a probability equal to (2 * pi * r) / (pi * R^2) = 2 * r/R^2. This is much easier to understand and more intuitive, but it's not quite as mathematically sound.

其他回答

注意点密度与半径的平方反比成正比,因此不是从[0,r_max]中选择r,而是从[0,r_max^2]中选择r,然后计算你的坐标:

x = sqrt(r) * cos(angle)
y = sqrt(r) * sin(angle)

这就得到了圆盘上均匀的点分布。

http://mathworld.wolfram.com/DiskPointPicking.html

1)在-1和1之间随机选择一个X。

var X:Number = Math.random() * 2 - 1;

2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:

var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);

3)在这两个极端之间随机选择一个Y:

var Y:Number = Math.random() * (YMax - YMin) + YMin;

4)将您的位置和半径值合并到最终值中:

var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;

半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。

设ρ(半径)和φ(方位角)是两个随机变量,对应于圆内任意一点的极坐标。如果这些点是均匀分布的,那么ρ和φ的分布函数是什么?

对于任意r: 0 < r < r,半径坐标ρ小于r的概率为

P[ρ < r] = P[点在半径r的圆内]= S1 / S0 =(r/ r)2

其中S1和S0分别是半径为r和r的圆的面积。 因此,CDF可表示为:

          0          if r<=0
  CDF =   (r/R)**2   if 0 < r <= R
          1          if r > R

和PDF格式:

PDF = d/dr(CDF) = 2 * (r/R**2) (0 < r <= R).

请注意,对于R=1随机变量根号(X),其中X在[0,1]上是一致的,有这个确切的CDF(因为P[根号(X) < y] = P[X < y**2] = y**2对于0 < y <= 1)。

φ在0 ~ 2*π范围内分布明显均匀。现在你可以创建随机极坐标,并使用三角方程将其转换为笛卡尔坐标:

x = ρ * cos(φ)
y = ρ * sin(φ)

忍不住要发布R=1的python代码。

from matplotlib import pyplot as plt
import numpy as np

rho = np.sqrt(np.random.uniform(0, 1, 5000))
phi = np.random.uniform(0, 2*np.pi, 5000)

x = rho * np.cos(phi)
y = rho * np.sin(phi)

plt.scatter(x, y, s = 4)

你会得到

Java解决方案和分发示例(2000分)

public void getRandomPointInCircle() {
    double t = 2 * Math.PI * Math.random();
    double r = Math.sqrt(Math.random());
    double x = r * Math.cos(t);
    double y = r * Math.sin(t);
    System.out.println(x);
    System.out.println(y);
}

基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe