我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
这取决于你对"均匀随机"的定义。这是一个微妙的点,你可以在这里的wiki页面上阅读更多关于它的内容:http://en.wikipedia.org/wiki/Bertrand_paradox_%28probability%29,在这里同样的问题,对“均匀随机”给出不同的解释会给出不同的答案!
根据你如何选择这些点,分布可能会有所不同,即使它们在某种意义上是均匀随机的。
It seems like the blog entry is trying to make it uniformly random in the following sense: If you take a sub-circle of the circle, with the same center, then the probability that the point falls in that region is proportional to the area of the region. That, I believe, is attempting to follow the now standard interpretation of 'uniformly random' for 2D regions with areas defined on them: probability of a point falling in any region (with area well defined) is proportional to the area of that region.
其他回答
我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:
in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.
下面是我的Python代码,从半径为rad的圆中生成num个随机点:
import matplotlib.pyplot as plt
import numpy as np
rad = 10
num = 1000
t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x = r * np.cos(t)
y = r * np.sin(t)
plt.plot(x, y, "ro", ms=1)
plt.axis([-15, 15, -15, 15])
plt.show()
首先我们生成一个cdf[x]
一点到圆心的距离小于x的概率。假设圆的半径为R。
显然,如果x = 0,那么cdf[0] = 0
显然,如果x是R,则cdf[R] = 1
显然,如果x = r,则cdf[r] = (r^2)/(r^2)
这是因为圆上的每个“小区域”都有相同的被选中的概率,所以概率与问题区域成比例。距离圆心x的面积是r^2
所以cdf[x] = x^2/R^2因为两者相互抵消了
我们有cdf[x]=x^2/R^2其中x从0到R
我们解出x
R^2 cdf[x] = x^2
x = R Sqrt[ cdf[x] ]
现在我们可以用一个从0到1的随机数来替换cdf
x = R Sqrt[ RandomReal[{0,1}] ]
最后
r = R Sqrt[ RandomReal[{0,1}] ];
theta = 360 deg * RandomReal[{0,1}];
{r,theta}
我们得到极坐标 {0.601168 R, 311.915°}
你也可以用你的直觉。
圆的面积是*r^2
为r = 1
得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /
现在我们把面积和点数翻倍
对于r=2和N=20
面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。
为了解决这个问题,我们可以说
x = r^2
sqrt(x) = r
如果在极坐标下生成一个向量
length = random_0_1();
angle = random_0_2pi();
更多的点会落在中心周围。
length = sqrt(random_0_1());
angle = random_0_2pi();
长度不再是均匀分布的,但是向量现在是均匀分布的。
让我们像阿基米德那样处理这个问题。
我们如何在三角形ABC中均匀地生成一个点,其中|AB|=|BC|?让我们把它扩展到平行四边形ABCD。在ABCD中很容易均匀地生成点。我们均匀地选择AB上的X点和BC上的Y点并选择Z使XBYZ是一个平行四边形。为了在原始三角形中得到一个均匀选择的点,我们只需将ADC中出现的任何点沿AC折叠回ABC。
现在考虑一个圆。在极限情况下,我们可以把它想象成无穷多个等腰三角形ABC, B在原点,A和C在周长上,彼此逐渐接近。我们可以从这些三角形中选择一个角。所以我们现在需要通过在ABC条上选择一点来生成到中心的距离。同样,延伸到ABCD, D现在是圆中心半径的两倍。
使用上述方法可以很容易地在ABCD中选择一个随机点。在AB上随机选一个点,在BC上随机选一个点。Ie。在[0,R]上取一对随机数字x和y,给出离中心的距离。三角形是一条细条AB和BC本质上是平行的。所以Z点到原点的距离是x+y。如果x+y >r我们向下折叠。
这是R=1的完整算法。我希望你同意这很简单。它使用三角函数,但您可以保证它需要多长时间,以及需要多少次random()调用,这与拒绝抽样不同。
t = 2*pi*random()
u = random()+random()
r = if u>1 then 2-u else u
[r*cos(t), r*sin(t)]
这里是Mathematica。
f[] := Block[{u, t, r},
u = Random[] + Random[];
t = Random[] 2 Pi;
r = If[u > 1, 2 - u, u];
{r Cos[t], r Sin[t]}
]
ListPlot[Table[f[], {10000}], AspectRatio -> Automatic]