我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:
in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.
其他回答
注意点密度与半径的平方反比成正比,因此不是从[0,r_max]中选择r,而是从[0,r_max^2]中选择r,然后计算你的坐标:
x = sqrt(r) * cos(angle)
y = sqrt(r) * sin(angle)
这就得到了圆盘上均匀的点分布。
http://mathworld.wolfram.com/DiskPointPicking.html
下面是我的Python代码,从半径为rad的圆中生成num个随机点:
import matplotlib.pyplot as plt
import numpy as np
rad = 10
num = 1000
t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x = r * np.cos(t)
y = r * np.sin(t)
plt.plot(x, y, "ro", ms=1)
plt.axis([-15, 15, -15, 15])
plt.show()
程序员解决方案:
创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
matrix[x][y] = true;
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()
位图仅用于解释逻辑。这是没有位图的代码:
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()
圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。
为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。
或者使用Mehrdad提出的蒙特卡罗方法。
EDIT
要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。
为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。
让我们像阿基米德那样处理这个问题。
我们如何在三角形ABC中均匀地生成一个点,其中|AB|=|BC|?让我们把它扩展到平行四边形ABCD。在ABCD中很容易均匀地生成点。我们均匀地选择AB上的X点和BC上的Y点并选择Z使XBYZ是一个平行四边形。为了在原始三角形中得到一个均匀选择的点,我们只需将ADC中出现的任何点沿AC折叠回ABC。
现在考虑一个圆。在极限情况下,我们可以把它想象成无穷多个等腰三角形ABC, B在原点,A和C在周长上,彼此逐渐接近。我们可以从这些三角形中选择一个角。所以我们现在需要通过在ABC条上选择一点来生成到中心的距离。同样,延伸到ABCD, D现在是圆中心半径的两倍。
使用上述方法可以很容易地在ABCD中选择一个随机点。在AB上随机选一个点,在BC上随机选一个点。Ie。在[0,R]上取一对随机数字x和y,给出离中心的距离。三角形是一条细条AB和BC本质上是平行的。所以Z点到原点的距离是x+y。如果x+y >r我们向下折叠。
这是R=1的完整算法。我希望你同意这很简单。它使用三角函数,但您可以保证它需要多长时间,以及需要多少次random()调用,这与拒绝抽样不同。
t = 2*pi*random()
u = random()+random()
r = if u>1 then 2-u else u
[r*cos(t), r*sin(t)]
这里是Mathematica。
f[] := Block[{u, t, r},
u = Random[] + Random[];
t = Random[] 2 Pi;
r = If[u > 1, 2 - u, u];
{r Cos[t], r Sin[t]}
]
ListPlot[Table[f[], {10000}], AspectRatio -> Automatic]