我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
Java解决方案和分发示例(2000分)
public void getRandomPointInCircle() {
double t = 2 * Math.PI * Math.random();
double r = Math.sqrt(Math.random());
double x = r * Math.cos(t);
double y = r * Math.sin(t);
System.out.println(x);
System.out.println(y);
}
基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe
其他回答
1)在-1和1之间随机选择一个X。
var X:Number = Math.random() * 2 - 1;
2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:
var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);
3)在这两个极端之间随机选择一个Y:
var Y:Number = Math.random() * (YMax - YMin) + YMin;
4)将您的位置和半径值合并到最终值中:
var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;
如何在半径为R的圆内随机生成一个点:
r = R * sqrt(random())
theta = random() * 2 * PI
(假设random()均匀地给出0到1之间的值)
如果你想把它转换成笛卡尔坐标,你可以做到
x = centerX + r * cos(theta)
y = centerY + r * sin(theta)
为什么sqrt(随机())?
让我们看看sqrt(random())之前的数学运算。为简单起见,假设我们是在单位圆上工作,即R = 1。
点与点之间的平均距离应该是相同的,不管我们看的距离中心有多远。这意味着,例如,观察一个周长为2的圆的周长,我们应该找到的点的数量是周长为1的圆周长上点的数量的两倍。
由于圆的周长(2πr)随r线性增长,因此随机点的数量应该随r线性增长。换句话说,期望的概率密度函数(PDF)线性增长。由于PDF的面积应该等于1,最大半径是1,我们有
所以我们知道随机值的理想密度应该是什么样的。 现在:当我们只有一个0到1之间的均匀随机值时,我们如何生成这样一个随机值?
我们用了一个叫做反变换采样的技巧
从PDF中创建累积分布函数(CDF) 沿着y = x镜像 将得到的函数应用于0到1之间的统一值。
听起来复杂吗?让我插入一段带有小侧轨的引语来传达直觉:
Suppose we want to generate a random point with the following distribution: That is 1/5 of the points uniformly between 1 and 2, and 4/5 of the points uniformly between 2 and 3. The CDF is, as the name suggests, the cumulative version of the PDF. Intuitively: While PDF(x) describes the number of random values at x, CDF(x) describes the number of random values less than x. In this case the CDF would look like: To see how this is useful, imagine that we shoot bullets from left to right at uniformly distributed heights. As the bullets hit the line, they drop down to the ground: See how the density of the bullets on the ground correspond to our desired distribution! We're almost there! The problem is that for this function, the y axis is the output and the x axis is the input. We can only "shoot bullets from the ground straight up"! We need the inverse function! This is why we mirror the whole thing; x becomes y and y becomes x: We call this CDF-1. To get values according to the desired distribution, we use CDF-1(random()).
所以,回到生成随机半径值,其中PDF等于2x。
步骤1:创建CDF: 由于我们处理的是实数,CDF表示为PDF的积分。
CDF(x) = ∫ 2x = x2
步骤2:沿y = x镜像CDF:
从数学上讲,这可以归结为交换x和y并求解y:
CDF: y = x2 交换:x = y2 解:y =√x CDF-1: y =√x
步骤3:将得到的函数应用于0到1之间的统一值
CDF-1(random()) =√random()
这就是我们要推导的:-)
这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。
这可能会让你知道为什么你会有这种行为。
在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。
编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。
这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。
这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。
我们记作f(r) = C*r;
这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。
因此,f(r) = 2*r/ r ^2
好,这就是如何得到链接中的公式。
然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。
对f(r)积分得到f(r) = r^2/ r^2
为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)
直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。
注意点密度与半径的平方反比成正比,因此不是从[0,r_max]中选择r,而是从[0,r_max^2]中选择r,然后计算你的坐标:
x = sqrt(r) * cos(angle)
y = sqrt(r) * sin(angle)
这就得到了圆盘上均匀的点分布。
http://mathworld.wolfram.com/DiskPointPicking.html
程序员解决方案:
创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
matrix[x][y] = true;
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()
位图仅用于解释逻辑。这是没有位图的代码:
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()