我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
你也可以用你的直觉。
圆的面积是*r^2
为r = 1
得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /
现在我们把面积和点数翻倍
对于r=2和N=20
面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。
为了解决这个问题,我们可以说
x = r^2
sqrt(x) = r
如果在极坐标下生成一个向量
length = random_0_1();
angle = random_0_2pi();
更多的点会落在中心周围。
length = sqrt(random_0_1());
angle = random_0_2pi();
长度不再是均匀分布的,但是向量现在是均匀分布的。
其他回答
我仍然不确定确切的“(2/R2)×r”,但显而易见的是,在给定的单位“dr”中需要分配的点的数量,即r的增加将与R2成正比,而不是r。
check this way...number of points at some angle theta and between r (0.1r to 0.2r) i.e. fraction of the r and number of points between r (0.6r to 0.7r) would be equal if you use standard generation, since the difference is only 0.1r between two intervals. but since area covered between points (0.6r to 0.7r) will be much larger than area covered between 0.1r to 0.2r, the equal number of points will be sparsely spaced in larger area, this I assume you already know, So the function to generate the random points must not be linear but quadratic, (since number of points required to be distributed in given unit 'dr' i.e. increase in r will be proportional to r2 and not r), so in this case it will be inverse of quadratic, since the delta we have (0.1r) in both intervals must be square of some function so it can act as seed value for linear generation of points (since afterwords, this seed is used linearly in sin and cos function), so we know, dr must be quadratic value and to make this seed quadratic, we need to originate this values from square root of r not r itself, I hope this makes it little more clear.
半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。
如何在半径为R的圆内随机生成一个点:
r = R * sqrt(random())
theta = random() * 2 * PI
(假设random()均匀地给出0到1之间的值)
如果你想把它转换成笛卡尔坐标,你可以做到
x = centerX + r * cos(theta)
y = centerY + r * sin(theta)
为什么sqrt(随机())?
让我们看看sqrt(random())之前的数学运算。为简单起见,假设我们是在单位圆上工作,即R = 1。
点与点之间的平均距离应该是相同的,不管我们看的距离中心有多远。这意味着,例如,观察一个周长为2的圆的周长,我们应该找到的点的数量是周长为1的圆周长上点的数量的两倍。
由于圆的周长(2πr)随r线性增长,因此随机点的数量应该随r线性增长。换句话说,期望的概率密度函数(PDF)线性增长。由于PDF的面积应该等于1,最大半径是1,我们有
所以我们知道随机值的理想密度应该是什么样的。 现在:当我们只有一个0到1之间的均匀随机值时,我们如何生成这样一个随机值?
我们用了一个叫做反变换采样的技巧
从PDF中创建累积分布函数(CDF) 沿着y = x镜像 将得到的函数应用于0到1之间的统一值。
听起来复杂吗?让我插入一段带有小侧轨的引语来传达直觉:
Suppose we want to generate a random point with the following distribution: That is 1/5 of the points uniformly between 1 and 2, and 4/5 of the points uniformly between 2 and 3. The CDF is, as the name suggests, the cumulative version of the PDF. Intuitively: While PDF(x) describes the number of random values at x, CDF(x) describes the number of random values less than x. In this case the CDF would look like: To see how this is useful, imagine that we shoot bullets from left to right at uniformly distributed heights. As the bullets hit the line, they drop down to the ground: See how the density of the bullets on the ground correspond to our desired distribution! We're almost there! The problem is that for this function, the y axis is the output and the x axis is the input. We can only "shoot bullets from the ground straight up"! We need the inverse function! This is why we mirror the whole thing; x becomes y and y becomes x: We call this CDF-1. To get values according to the desired distribution, we use CDF-1(random()).
所以,回到生成随机半径值,其中PDF等于2x。
步骤1:创建CDF: 由于我们处理的是实数,CDF表示为PDF的积分。
CDF(x) = ∫ 2x = x2
步骤2:沿y = x镜像CDF:
从数学上讲,这可以归结为交换x和y并求解y:
CDF: y = x2 交换:x = y2 解:y =√x CDF-1: y =√x
步骤3:将得到的函数应用于0到1之间的统一值
CDF-1(random()) =√random()
这就是我们要推导的:-)
这样一个有趣的问题。 一个点被选择的概率随着距离轴原点的增加而降低的基本原理在上面已经解释了多次。我们通过取U[0,1]的根来解释这一点。 下面是Python 3中正r的通解。
import numpy
import math
import matplotlib.pyplot as plt
def sq_point_in_circle(r):
"""
Generate a random point in an r radius circle
centered around the start of the axis
"""
t = 2*math.pi*numpy.random.uniform()
R = (numpy.random.uniform(0,1) ** 0.5) * r
return(R*math.cos(t), R*math.sin(t))
R = 200 # Radius
N = 1000 # Samples
points = numpy.array([sq_point_in_circle(R) for i in range(N)])
plt.scatter(points[:, 0], points[:,1])
这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。
这可能会让你知道为什么你会有这种行为。
在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。
编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。
这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。
这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。
我们记作f(r) = C*r;
这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。
因此,f(r) = 2*r/ r ^2
好,这就是如何得到链接中的公式。
然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。
对f(r)积分得到f(r) = r^2/ r^2
为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)
直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。