我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

你也可以用你的直觉。

圆的面积是*r^2

为r = 1

得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /

现在我们把面积和点数翻倍

对于r=2和N=20

面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。

为了解决这个问题,我们可以说

x = r^2
sqrt(x) = r

如果在极坐标下生成一个向量

length = random_0_1();
angle = random_0_2pi();

更多的点会落在中心周围。

length = sqrt(random_0_1());
angle = random_0_2pi();

长度不再是均匀分布的,但是向量现在是均匀分布的。

其他回答

让我们像阿基米德那样处理这个问题。

我们如何在三角形ABC中均匀地生成一个点,其中|AB|=|BC|?让我们把它扩展到平行四边形ABCD。在ABCD中很容易均匀地生成点。我们均匀地选择AB上的X点和BC上的Y点并选择Z使XBYZ是一个平行四边形。为了在原始三角形中得到一个均匀选择的点,我们只需将ADC中出现的任何点沿AC折叠回ABC。

现在考虑一个圆。在极限情况下,我们可以把它想象成无穷多个等腰三角形ABC, B在原点,A和C在周长上,彼此逐渐接近。我们可以从这些三角形中选择一个角。所以我们现在需要通过在ABC条上选择一点来生成到中心的距离。同样,延伸到ABCD, D现在是圆中心半径的两倍。

使用上述方法可以很容易地在ABCD中选择一个随机点。在AB上随机选一个点,在BC上随机选一个点。Ie。在[0,R]上取一对随机数字x和y,给出离中心的距离。三角形是一条细条AB和BC本质上是平行的。所以Z点到原点的距离是x+y。如果x+y >r我们向下折叠。

这是R=1的完整算法。我希望你同意这很简单。它使用三角函数,但您可以保证它需要多长时间,以及需要多少次random()调用,这与拒绝抽样不同。

t = 2*pi*random()
u = random()+random()
r = if u>1 then 2-u else u
[r*cos(t), r*sin(t)]

这里是Mathematica。

f[] := Block[{u, t, r},
  u = Random[] + Random[];
  t = Random[] 2 Pi;
  r = If[u > 1, 2 - u, u];
  {r Cos[t], r Sin[t]}
]

ListPlot[Table[f[], {10000}], AspectRatio -> Automatic]

我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:

in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.

你也可以用你的直觉。

圆的面积是*r^2

为r = 1

得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /

现在我们把面积和点数翻倍

对于r=2和N=20

面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。

为了解决这个问题,我们可以说

x = r^2
sqrt(x) = r

如果在极坐标下生成一个向量

length = random_0_1();
angle = random_0_2pi();

更多的点会落在中心周围。

length = sqrt(random_0_1());
angle = random_0_2pi();

长度不再是均匀分布的,但是向量现在是均匀分布的。

程序员解决方案:

创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        matrix[x][y] = true;

        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;

      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

位图仅用于解释逻辑。这是没有位图的代码:

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;
      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。

bool[,] getMatrix(System.Drawing.Rectangle r) {
    bool[,] matrix = new bool[r.Width, r.Height];
    return matrix;
}

void fillMatrix(ref bool[,] matrix, Vector center) {
    double radius = center.X;
    Random r = new Random();
    for (int y = 0; y < matrix.GetLength(0); y++) {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            double distance = (center - new Vector(x, y)).Length;
            if (distance < radius) {
                matrix[x, y] = r.NextDouble() > 0.5;
            }
        }
    }

}

private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
    var g = this.CreateGraphics();

    Bitmap pixel = new Bitmap(1,1);
    pixel.SetPixel(0, 0, Color.Black);

    for (int y = 0; y < matrix.GetLength(0); y++)
    {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            if (matrix[x, y]) {
                g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
            }
        }
    }

    g.Dispose();
}

private void button1_Click(object sender, EventArgs e)
{
    System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
    double radius = r.Width / 2;
    Vector center = new Vector(r.Left + radius, r.Top + radius);
    Vector normalizedCenter = new Vector(radius, radius);
    bool[,] matrix = getMatrix(r);
    fillMatrix(ref matrix, normalizedCenter);
    drawMatrix(center, radius, matrix);
}