我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。

bool[,] getMatrix(System.Drawing.Rectangle r) {
    bool[,] matrix = new bool[r.Width, r.Height];
    return matrix;
}

void fillMatrix(ref bool[,] matrix, Vector center) {
    double radius = center.X;
    Random r = new Random();
    for (int y = 0; y < matrix.GetLength(0); y++) {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            double distance = (center - new Vector(x, y)).Length;
            if (distance < radius) {
                matrix[x, y] = r.NextDouble() > 0.5;
            }
        }
    }

}

private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
    var g = this.CreateGraphics();

    Bitmap pixel = new Bitmap(1,1);
    pixel.SetPixel(0, 0, Color.Black);

    for (int y = 0; y < matrix.GetLength(0); y++)
    {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            if (matrix[x, y]) {
                g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
            }
        }
    }

    g.Dispose();
}

private void button1_Click(object sender, EventArgs e)
{
    System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
    double radius = r.Width / 2;
    Vector center = new Vector(r.Left + radius, r.Top + radius);
    Vector normalizedCenter = new Vector(radius, radius);
    bool[,] matrix = getMatrix(r);
    fillMatrix(ref matrix, normalizedCenter);
    drawMatrix(center, radius, matrix);
}

其他回答

首先我们生成一个cdf[x]

一点到圆心的距离小于x的概率。假设圆的半径为R。

显然,如果x = 0,那么cdf[0] = 0

显然,如果x是R,则cdf[R] = 1

显然,如果x = r,则cdf[r] = (r^2)/(r^2)

这是因为圆上的每个“小区域”都有相同的被选中的概率,所以概率与问题区域成比例。距离圆心x的面积是r^2

所以cdf[x] = x^2/R^2因为两者相互抵消了

我们有cdf[x]=x^2/R^2其中x从0到R

我们解出x

R^2 cdf[x] = x^2

x = R Sqrt[ cdf[x] ]

现在我们可以用一个从0到1的随机数来替换cdf

x = R Sqrt[ RandomReal[{0,1}] ]

最后

r = R Sqrt[  RandomReal[{0,1}] ];
theta = 360 deg * RandomReal[{0,1}];
{r,theta}

我们得到极坐标 {0.601168 R, 311.915°}

你也可以用你的直觉。

圆的面积是*r^2

为r = 1

得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /

现在我们把面积和点数翻倍

对于r=2和N=20

面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。

为了解决这个问题,我们可以说

x = r^2
sqrt(x) = r

如果在极坐标下生成一个向量

length = random_0_1();
angle = random_0_2pi();

更多的点会落在中心周围。

length = sqrt(random_0_1());
angle = random_0_2pi();

长度不再是均匀分布的,但是向量现在是均匀分布的。

我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:

in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.

圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。

为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。

或者使用Mehrdad提出的蒙特卡罗方法。

EDIT

要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。

为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。

Java解决方案和分发示例(2000分)

public void getRandomPointInCircle() {
    double t = 2 * Math.PI * Math.random();
    double r = Math.sqrt(Math.random());
    double x = r * Math.cos(t);
    double y = r * Math.sin(t);
    System.out.println(x);
    System.out.println(y);
}

基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe