我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。
为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。
或者使用Mehrdad提出的蒙特卡罗方法。
EDIT
要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。
为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。
其他回答
Java解决方案和分发示例(2000分)
public void getRandomPointInCircle() {
double t = 2 * Math.PI * Math.random();
double r = Math.sqrt(Math.random());
double x = r * Math.cos(t);
double y = r * Math.sin(t);
System.out.println(x);
System.out.println(y);
}
基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe
这取决于你对"均匀随机"的定义。这是一个微妙的点,你可以在这里的wiki页面上阅读更多关于它的内容:http://en.wikipedia.org/wiki/Bertrand_paradox_%28probability%29,在这里同样的问题,对“均匀随机”给出不同的解释会给出不同的答案!
根据你如何选择这些点,分布可能会有所不同,即使它们在某种意义上是均匀随机的。
It seems like the blog entry is trying to make it uniformly random in the following sense: If you take a sub-circle of the circle, with the same center, then the probability that the point falls in that region is proportional to the area of the region. That, I believe, is attempting to follow the now standard interpretation of 'uniformly random' for 2D regions with areas defined on them: probability of a point falling in any region (with area well defined) is proportional to the area of that region.
半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。
我认为在这种情况下,使用极坐标是一种使问题复杂化的方法,如果你在一个边长为2R的正方形中随机选择点,然后选择点(x,y)使x^2+y^2<=R^2,这将会容易得多。
这里有一个快速而简单的解决方案。
在(0,1)范围内选择两个随机数,即a和b。如果b < a,则交换它们。你的观点是(b * R * cos(2 *π* a / b), b * R * sin(2 *π* a / b))。
您可以这样考虑这个解决方案。如果你把圆切开,然后把它拉直,你会得到一个直角三角形。把这个三角形缩小,你会得到一个从(0,0)到(1,0)到(1,1)再回到(0,0)的三角形,所有这些变换都会均匀地改变密度。你所做的就是在三角形中随机取一个点然后反过来得到圆中的一个点。