我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
1)在-1和1之间随机选择一个X。
var X:Number = Math.random() * 2 - 1;
2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:
var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);
3)在这两个极端之间随机选择一个Y:
var Y:Number = Math.random() * (YMax - YMin) + YMin;
4)将您的位置和半径值合并到最终值中:
var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;
其他回答
这取决于你对"均匀随机"的定义。这是一个微妙的点,你可以在这里的wiki页面上阅读更多关于它的内容:http://en.wikipedia.org/wiki/Bertrand_paradox_%28probability%29,在这里同样的问题,对“均匀随机”给出不同的解释会给出不同的答案!
根据你如何选择这些点,分布可能会有所不同,即使它们在某种意义上是均匀随机的。
It seems like the blog entry is trying to make it uniformly random in the following sense: If you take a sub-circle of the circle, with the same center, then the probability that the point falls in that region is proportional to the area of the region. That, I believe, is attempting to follow the now standard interpretation of 'uniformly random' for 2D regions with areas defined on them: probability of a point falling in any region (with area well defined) is proportional to the area of that region.
1)在-1和1之间随机选择一个X。
var X:Number = Math.random() * 2 - 1;
2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:
var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);
3)在这两个极端之间随机选择一个Y:
var Y:Number = Math.random() * (YMax - YMin) + YMin;
4)将您的位置和半径值合并到最终值中:
var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;
我认为在这种情况下,使用极坐标是一种使问题复杂化的方法,如果你在一个边长为2R的正方形中随机选择点,然后选择点(x,y)使x^2+y^2<=R^2,这将会容易得多。
我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:
in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.
下面是我的Python代码,从半径为rad的圆中生成num个随机点:
import matplotlib.pyplot as plt
import numpy as np
rad = 10
num = 1000
t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x = r * np.cos(t)
y = r * np.sin(t)
plt.plot(x, y, "ro", ms=1)
plt.axis([-15, 15, -15, 15])
plt.show()