以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
当前回答
X = X / 2;是合适的代码使用..但是一个操作取决于你自己的程序,你想要产生怎样的输出。
其他回答
哪一个是最好的选择,为什么整数除以2?
这取决于你对最佳的定义。
如果你想让你的同事讨厌你,或者让你的代码难以阅读,我肯定会选择第一个选择。
如果你想把一个数除以2,就用第二个数。
这两者是不等价的,如果数字是负的或在更大的表达式中,它们的行为是不一样的——bitshift的优先级比+或-低,除法的优先级更高。
您应该编写代码来表达其意图。如果您关心的是性能,不要担心,优化器在这类微优化方面做得很好。
Knuth说:
过早的优化是万恶之源。
所以我建议用x /= 2;
这样代码很容易理解,而且我认为这种形式的操作优化,对处理器来说不会有太大的区别。
使用最能描述您要做的事情的操作。
如果你将数字作为一个比特序列来处理,请使用bitshift。 如果你把它当作一个数值,使用除法。
请注意,它们并不完全相等。对于负整数,它们可以给出不同的结果。例如:
-5 / 2 = -2
-5 >> 1 = -3
(ideone)
x / 2更清晰,x >> 1快不了多少(根据一个微基准测试,对于Java JVM快30%左右)。正如其他人所注意到的,对于负数,舍入略有不同,所以当您想处理负数时必须考虑这一点。一些编译器可能会自动将x / 2转换为x >> 1,如果他们知道这个数字不可能是负数(即使我无法验证这一点)。
即使x / 2可能不使用(慢)除法CPU指令,因为一些捷径是可能的,但它仍然比x >> 1慢。
(This is a C / C++ question, other programming languages have more operators. For Java there is also the unsigned right shift, x >>> 1, which is again different. It allows to correctly calculate the mean (average) value of two values, so that (a + b) >>> 1 will return the mean value even for very large values of a and b. This is required for example for binary search if the array indices can get very large. There was a bug in many versions of binary search, because they used (a + b) / 2 to calculate the average. This doesn't work correctly. The correct solution is to use (a + b) >>> 1 instead.)
我想说有几件事需要考虑。
Bitshift should be faster, as no special computation is really needed to shift the bits, however as pointed out, there are potential issues with negative numbers. If you are ensured to have positive numbers, and are looking for speed then I would recommend bitshift. The division operator is very easy for humans to read. So if you are looking for code readability, you could use this. Note that the field of compiler optimization has come a long way, so making code easy to read and understand is good practice. Depending on the underlying hardware, operations may have different speeds. Amdal's law is to make the common case fast. So you may have hardware that can perform different operations faster than others. For example, multiplying by 0.5 may be faster than dividing by 2. (Granted you may need to take the floor of the multiplication if you wish to enforce integer division).
如果您追求的是纯粹的性能,我建议您创建一些可以执行数百万次操作的测试。对执行进行多次采样(您的样本量),以确定哪一个在统计上最适合您的操作系统/硬件/编译器/代码。