有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:
def 1_by_n(n, C = 10): #n could be float. C could be any positive number
if n <= 0.0: #If input is actually 0, infinite loop.
while True:
sleep(1) #or pass
return #This line is not needed and is unreachable
delta = 0.0001
itr = delta
while delta < C/n:
itr += delta
因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。
有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。
我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)
其他回答
O(1/n)并不小于O(1)这基本上意味着你拥有的数据越多,算法运行得越快。假设你有一个数组,如果它小于10100个元素就填充它,如果多于10100个元素就什么都不做。这个当然不是O(1/n),而是O(-n):)太糟糕了,O大符号不允许负数。
正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。
当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)
def get_faster(list):
how_long = 1/len(list)
sleep(how_long)
If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.
我不知道算法,但复杂度小于O(1)出现在随机算法中。实际上,o(1)(小o)小于o(1)这种复杂性通常出现在随机算法中。例如,如你所说,当某个事件的概率为1/n阶时,他们用o(1)表示。或者当他们想说某件事发生的概率很高时(例如1 - 1/n),他们用1 - o(1)表示。
没有比O(1)小的数 大o符号表示算法的最大复杂度
如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的
同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小
在数值分析中,近似算法在近似公差范围内应具有次常数的渐近复杂度。
class Function
{
public double[] ApproximateSolution(double tolerance)
{
// if this isn't sub-constant on the parameter, it's rather useless
}
}