有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:
def 1_by_n(n, C = 10): #n could be float. C could be any positive number
if n <= 0.0: #If input is actually 0, infinite loop.
while True:
sleep(1) #or pass
return #This line is not needed and is unreachable
delta = 0.0001
itr = delta
while delta < C/n:
itr += delta
因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。
有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。
我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)
其他回答
我相信量子算法可以通过叠加“一次”进行多次计算……
我怀疑这是一个有用的答案。
我不懂数学,但这个概念似乎是寻找一个函数,需要更少的时间,你添加更多的输入?在这种情况下,怎么样:
def f( *args ):
if len(args)<1:
args[1] = 10
当添加可选的第二个参数时,此函数会更快,因为否则必须赋值它。我意识到这不是一个方程,但维基百科页面说大o通常也应用于计算系统。
有次线性算法。事实上,Bayer-Moore搜索算法就是一个很好的例子。
这不可能。Big-O的定义是不大于不平等:
A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)
所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。
我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:
def 1_by_n(n, C = 10): #n could be float. C could be any positive number
if n <= 0.0: #If input is actually 0, infinite loop.
while True:
sleep(1) #or pass
return #This line is not needed and is unreachable
delta = 0.0001
itr = delta
while delta < C/n:
itr += delta
因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。
有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。
我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)