好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

float roundUp(float number, float fixedBase) {
    if (fixedBase != 0 && number != 0) {
        float sign = number > 0 ? 1 : -1;
        number *= sign;
        number /= fixedBase;
        int fixedPoint = (int) ceil(number);
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这适用于任何浮点数或基数(例如,你可以四舍五入到最接近的6.75)。本质上,它是转换到定点,四舍五入,然后转换回来。它通过舍入0来处理负号。它还通过将函数转换为roundDown来处理值的负舍入。

int特定的版本如下所示:

int roundUp(int number, int fixedBase) {
    if (fixedBase != 0 && number != 0) {
        int sign = number > 0 ? 1 : -1;
        int baseSign = fixedBase > 0 ? 1 : 0;
        number *= sign;
        int fixedPoint = (number + baseSign * (fixedBase - 1)) / fixedBase;
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这或多或少是plinth的答案,加上负输入支持。

其他回答

这就是我要做的:

#include <cmath>

int roundUp(int numToRound, int multiple)
{
    // if our number is zero, return immediately
   if (numToRound == 0)
        return multiple;

    // if multiplier is zero, return immediately
    if (multiple == 0)
        return numToRound;

    // how many times are number greater than multiple
    float rounds = static_cast<float>(numToRound) / static_cast<float>(multiple);

    // determine, whether if number is multiplier of multiple
    int floorRounds = static_cast<int>(floor(rounds));

    if (rounds - floorRounds > 0)
        // multiple is not multiplier of number -> advance to the next multiplier
        return (floorRounds+1) * multiple;
    else
        // multiple is multiplier of number -> return actual multiplier
        return (floorRounds) * multiple;
}

代码可能不是最优的,但比起枯燥的性能,我更喜欢干净的代码。

这将得到正整数的结果:

#include <iostream>
using namespace std;

int roundUp(int numToRound, int multiple);

int main() {
    cout << "answer is: " << roundUp(7, 100) << endl;
    cout << "answer is: " << roundUp(117, 100) << endl;
    cout << "answer is: " << roundUp(477, 100) << endl;
    cout << "answer is: " << roundUp(1077, 100) << endl;
    cout << "answer is: " << roundUp(52,20) << endl;
    cout << "answer is: " << roundUp(74,30) << endl;
    return 0;
}

int roundUp(int numToRound, int multiple) {
    if (multiple == 0) {
        return 0;
    }
    int result = (int) (numToRound / multiple) * multiple;
    if (numToRound % multiple) {
        result += multiple;
    } 
    return result;
}

这里是输出:

answer is: 100
answer is: 200
answer is: 500
answer is: 1100
answer is: 60
answer is: 90

这可能会有所帮助:

int RoundUpToNearestMultOfNumber(int val, int num)
{
  assert(0 != num);
  return (floor((val + num) / num) * num);
}

我用的是:

template <class _Ty>
inline _Ty n_Align_Up(_Ty n_x, _Ty n_alignment)
{
    assert(n_alignment > 0);
    //n_x += (n_x >= 0)? n_alignment - 1 : 1 - n_alignment; // causes to round away from zero (greatest absolute value)
    n_x += (n_x >= 0)? n_alignment - 1 : -1; // causes to round up (towards positive infinity)
    //n_x += (_Ty(-(n_x >= 0)) & n_alignment) - 1; // the same as above, avoids branch and integer multiplication
    //n_x += n_alignment - 1; // only works for positive numbers (fastest)
    return n_x - n_x % n_alignment; // rounds negative towards zero
}

对于2的幂:

template <class _Ty>
bool b_Is_POT(_Ty n_x)
{
    return !(n_x & (n_x - 1));
}

template <class _Ty>
inline _Ty n_Align_Up_POT(_Ty n_x, _Ty n_pot_alignment)
{
    assert(n_pot_alignment > 0);
    assert(b_Is_POT(n_pot_alignment)); // alignment must be power of two
    -- n_pot_alignment;
    return (n_x + n_pot_alignment) & ~n_pot_alignment; // rounds towards positive infinity (i.e. negative towards zero)
}

请注意,这两个负值都舍入到0(这意味着所有值都舍入到正无穷),它们都不依赖于有符号溢出(这在C/ c++中未定义)。

这给:

n_Align_Up(10, 100) = 100
n_Align_Up(110, 100) = 200
n_Align_Up(0, 100) = 0
n_Align_Up(-10, 100) = 0
n_Align_Up(-110, 100) = -100
n_Align_Up(-210, 100) = -200
n_Align_Up_POT(10, 128) = 128
n_Align_Up_POT(130, 128) = 256
n_Align_Up_POT(0, 128) = 0
n_Align_Up_POT(-10, 128) = 0
n_Align_Up_POT(-130, 128) = -128
n_Align_Up_POT(-260, 128) = -256

首先,因为我不太明白你想要做什么,这些台词

int roundUp = roundDown + multiple;
int roundCalc = roundUp;
return (roundCalc); 

肯定可以缩写为

int roundUp = roundDown + multiple;
return roundUp;