好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

这是对“如何求出n位需要多少字节?”(A:(n位+ 7)/ 8)。

int RoundUp(int n, int roundTo)
{
    // fails on negative?  What does that mean?
    if (roundTo == 0) return 0;
    return ((n + roundTo - 1) / roundTo) * roundTo; // edit - fixed error
}

其他回答

四舍五入到2的幂:

以防有人需要一个正数四舍五入到2的幂的最近倍数的解(因为这就是我在这里结束的原因):

// number: the number to be rounded (ex: 5, 123, 98345, etc.)
// pow2:   the power to be rounded to (ex: to round to 16, use '4')
int roundPow2 (int number, int pow2) {
    pow2--;                     // because (2 exp x) == (1 << (x -1))
    pow2 = 0x01 << pow2;

    pow2--;                     // because for any
                                //
                                // (x = 2 exp x)
                                //
                                // subtracting one will
                                // yield a field of ones
                                // which we can use in a
                                // bitwise OR

    number--;                   // yield a similar field for
                                // bitwise OR
    number = number | pow2;
    number++;                   // restore value by adding one back

    return number;
}

如果输入的数字已经是一个倍数,那么它将保持不变。

以下是GCC使用- o2或- os给出的x86_64输出(9Sep2013 Build - godbolt GCC online):

roundPow2(int, int):
    lea ecx, [rsi-1]
    mov eax, 1
    sub edi, 1
    sal eax, cl
    sub eax, 1
    or  eax, edi
    add eax, 1
    ret

每一行C代码都与它在程序集中的行完全对应:http://goo.gl/DZigfX

每条指令都非常快,所以这个函数也非常快。由于代码非常小且快速,因此在使用时内联该函数可能很有用。


信贷:

算法:Hagen von Eitzen @ Math。SE Godbolt交互式编译器:@mattgodbolt/gcc-explorer在GitHub上

我想这应该对你有帮助。我用C语言编写了下面的程序。

# include <stdio.h>
int main()
{
  int i, j;
  printf("\nEnter Two Integers i and j...");
  scanf("%d %d", &i, &j);
  int Round_Off=i+j-i%j;
  printf("The Rounded Off Integer Is...%d\n", Round_Off);
  return 0;
}

当factor总是为正时,这种方法有效:

int round_up(int num, int factor)
{
    return num + factor - 1 - (num + factor - 1) % factor;
}

编辑:返回round_up(0,100)=100。请参阅下面Paul的评论,了解返回round_up(0,100)=0的解决方案。

如果x已经是一个倍数,我使用模的组合来取消余数的加法:

int round_up(int x, int div)
{
    return x + (div - x % div) % div;
}

我们求余数的倒数然后再用除数求模如果它是除数本身,再加上x。

round_up(19, 3) = 21
int noOfMultiples = int((numToRound / multiple)+0.5);
return noOfMultiples*multiple

c++把每个数字四舍五入,所以如果你加0.5(如果是1.5,就是2),但1.49就是1.99,所以是1。

编辑-抱歉没有看到你想四舍五入,我建议使用ceil()方法而不是+0.5