好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

我发现了一个算法,有点类似于上面发布的:

Int [(|x|+n-1)/n]*[(nx)/|x|],其中x是用户输入的值,n是使用的倍数。

它适用于所有值x,其中x是整数(正或负,包括零)。我专门为c++程序编写了它,但基本上可以在任何语言中实现。

其他回答

int noOfMultiples = int((numToRound / multiple)+0.5);
return noOfMultiples*multiple

c++把每个数字四舍五入,所以如果你加0.5(如果是1.5,就是2),但1.49就是1.99,所以是1。

编辑-抱歉没有看到你想四舍五入,我建议使用ceil()方法而不是+0.5

如果x已经是一个倍数,我使用模的组合来取消余数的加法:

int round_up(int x, int div)
{
    return x + (div - x % div) % div;
}

我们求余数的倒数然后再用除数求模如果它是除数本身,再加上x。

round_up(19, 3) = 21

四舍五入到最接近的倍数,恰好是2的幂

unsigned int round(unsigned int value, unsigned int multiple){
    return ((value-1u) & ~(multiple-1u)) + multiple;
}

这在沿中间线分配时很有用,其中您想要的舍入增量是2的幂,但结果值只需是它的倍数。在gcc上,这个函数体生成8条没有除法或分支的汇编指令。

round(  0,  16) ->   0
round(  1,  16) ->  16
round( 16,  16) ->  16
round(257, 128) -> 384 (128 * 3)
round(333,   2) -> 334

首先,错误条件(multiple == 0)应该有一个返回值。什么?我不知道。也许您想要抛出一个异常,这取决于您。但是,什么都不返回是危险的。

其次,您应该检查numToRound是否已经是一个倍数。否则,当您在roundDown中添加倍数时,您将得到错误的答案。

第三,你的角色选择是错误的。您将numToRound转换为一个整数,但它已经是一个整数。需要在除法之前强制转换为to double,在乘法之后强制转换回int。

最后,负数需要什么?舍入“向上”可以表示舍入到零(与正数方向相同),或远离零(一个“更大”的负数)。或者,也许你不在乎。

以下是前三个修复的版本,但我不处理负面问题:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return 0;
 }
 else if(numToRound % multiple == 0)
 {
  return numToRound
 }

 int roundDown = (int) (( (double) numToRound / multiple ) * multiple);
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

没有条件:

int roundUp(int numToRound, int multiple) 
{
    assert(multiple);
    return ((numToRound + multiple - 1) / multiple) * multiple;
}

这就像对负数进行舍入一样


同样适用于负数的版本:

int roundUp(int numToRound, int multiple) 
{
    assert(multiple);
    int isPositive = (int)(numToRound >= 0);
    return ((numToRound + isPositive * (multiple - 1)) / multiple) * multiple;
}

测试


如果倍数是2的幂(快3.7倍)

int roundUp(int numToRound, int multiple) 
{
    assert(multiple && ((multiple & (multiple - 1)) == 0));
    return (numToRound + multiple - 1) & -multiple;
}

测试