用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!
当前回答
你的问题是判断一个特定的数字是否是质数吗?然后你需要一个质数测试(很简单)。或者你需要一个给定数字之前的所有质数吗?在这种情况下,素筛是很好的(简单,但需要内存)。或者你需要一个数的质因数?这将需要分解(如果你真的想要最有效的方法,对于较大的数字很难)。你看到的数字有多大?16位?32位?更大的吗?
一种聪明而有效的方法是预先计算质数表,并使用位级编码将它们保存在文件中。文件被认为是一个长位向量,而位n表示整数n。如果n是素数,则其位设置为1,否则为0。查找非常快(您可以计算字节偏移量和位掩码),并且不需要在内存中加载文件。
其他回答
#include<stdio.h>
main()
{
long long unsigned x,y,b,z,e,r,c;
scanf("%llu",&x);
if(x<2)return 0;
scanf("%llu",&y);
if(y<x)return 0;
if(x==2)printf("|2");
if(x%2==0)x+=1;
if(y%2==0)y-=1;
for(b=x;b<=y;b+=2)
{
z=b;e=0;
for(c=2;c*c<=z;c++)
{
if(z%c==0)e++;
if(e>0)z=3;
}
if(e==0)
{
printf("|%llu",z);
r+=1;
}
}
printf("|\n%llu outputs...\n",r);
scanf("%llu",&r);
}
一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。
我最近写了这段代码来求数字的和。它可以很容易地修改,以确定一个数字是否是质数。基准测试在代码之上。
// built on core-i2 e8400
// Benchmark from PowerShell
// Measure-Command { ExeName.exe }
// Days : 0
// Hours : 0
// Minutes : 0
// Seconds : 23
// Milliseconds : 516
// Ticks : 235162598
// TotalDays : 0.00027217893287037
// TotalHours : 0.00653229438888889
// TotalMinutes : 0.391937663333333
// TotalSeconds : 23.5162598
// TotalMilliseconds : 23516.2598
// built with latest MSVC
// cl /EHsc /std:c++latest main.cpp /O2 /fp:fast /Qpar
#include <cmath>
#include <iostream>
#include <vector>
inline auto prime = [](std::uint64_t I, std::vector<std::uint64_t> &cache) -> std::uint64_t {
std::uint64_t root{static_cast<std::uint64_t>(std::sqrtl(I))};
for (std::size_t i{}; cache[i] <= root; ++i)
if (I % cache[i] == 0)
return 0;
cache.push_back(I);
return I;
};
inline auto prime_sum = [](std::uint64_t S) -> std::uint64_t {
std::uint64_t R{5};
std::vector<std::uint64_t> cache;
cache.reserve(S / 16);
cache.push_back(3);
for (std::uint64_t I{5}; I <= S; I += 8)
{
std::uint64_t U{I % 3};
if (U != 0)
R += prime(I, cache);
if (U != 1)
R += prime(I + 2, cache);
if (U != 2)
R += prime(I + 4, cache);
R += prime(I + 6, cache);
}
return R;
};
int main()
{
std::cout << prime_sum(63210123);
}
I know it's somewhat later, but this could be useful to people arriving here from searches. Anyway, here's some JavaScript that relies on the fact that only prime factors need to be tested, so the earlier primes generated by the code are re-used as test factors for later ones. Of course, all even and mod 5 values are filtered out first. The result will be in the array P, and this code can crunch 10 million primes in under 1.5 seconds on an i7 PC (or 100 million in about 20). Rewritten in C it should be very fast.
var P = [1, 2], j, k, l = 3
for (k = 3 ; k < 10000000 ; k += 2)
{
loop: if (++l < 5)
{
for (j = 2 ; P[j] <= Math.sqrt(k) ; ++j)
if (k % P[j] == 0) break loop
P[P.length] = k
}
else l = 0
}
我会让你决定这是不是最快的。
using System;
namespace PrimeNumbers
{
public static class Program
{
static int primesCount = 0;
public static void Main()
{
DateTime startingTime = DateTime.Now;
RangePrime(1,1000000);
DateTime endingTime = DateTime.Now;
TimeSpan span = endingTime - startingTime;
Console.WriteLine("span = {0}", span.TotalSeconds);
}
public static void RangePrime(int start, int end)
{
for (int i = start; i != end+1; i++)
{
bool isPrime = IsPrime(i);
if(isPrime)
{
primesCount++;
Console.WriteLine("number = {0}", i);
}
}
Console.WriteLine("primes count = {0}",primesCount);
}
public static bool IsPrime(int ToCheck)
{
if (ToCheck == 2) return true;
if (ToCheck < 2) return false;
if (IsOdd(ToCheck))
{
for (int i = 3; i <= (ToCheck / 3); i += 2)
{
if (ToCheck % i == 0) return false;
}
return true;
}
else return false; // even numbers(excluding 2) are composite
}
public static bool IsOdd(int ToCheck)
{
return ((ToCheck % 2 != 0) ? true : false);
}
}
}
在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。