用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

这是找到从1到n的所有质数的最快算法(在我的电脑上,它只花了0.004秒就找到了从1到1000000的所有质数)。

#include <iostream>
#include <fstream>

using namespace std;

double FindPrime(bool* array, int size){
clock_t start;
double runtime;
for (int i = 2; i < size; i++)
    array[i] = true;
start = clock();
for (int i = 2; i <= size; i++)
    if (array[i])
        for (int j = 2 * i; j < size; j += i)
            array[j] = false;
runtime = (double)(clock() - start) / CLOCKS_PER_SEC;
return runtime;
}


int main() {
ofstream fout("prime.txt");
int n = 0;
cout << "Enter the upper limit of prime numbers searching algorithm:";
cin >> n;
bool* array = new bool[n + 1];
double duration = FindPrime(array, n + 1);
printf("\n%f seconds.\n", duration);
for (int i = 2; i <= n; i++)
    if (array[i])
        fout << i << endl;
fout.close();

return 0;
}

其他回答

一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。

我总是用这种方法来计算筛子算法后面的质数。

void primelist()
 {
   for(int i = 4; i < pr; i += 2) mark[ i ] = false;
   for(int i = 3; i < pr; i += 2) mark[ i ] = true; mark[ 2 ] = true;
   for(int i = 3, sq = sqrt( pr ); i < sq; i += 2)
       if(mark[ i ])
          for(int j = i << 1; j < pr; j += i) mark[ j ] = false;
  prime[ 0 ] = 2; ind = 1;
  for(int i = 3; i < pr; i += 2)
    if(mark[ i ]) ind++; printf("%d\n", ind);
 }

I know it's somewhat later, but this could be useful to people arriving here from searches. Anyway, here's some JavaScript that relies on the fact that only prime factors need to be tested, so the earlier primes generated by the code are re-used as test factors for later ones. Of course, all even and mod 5 values are filtered out first. The result will be in the array P, and this code can crunch 10 million primes in under 1.5 seconds on an i7 PC (or 100 million in about 20). Rewritten in C it should be very fast.

var P = [1, 2], j, k, l = 3

for (k = 3 ; k < 10000000 ; k += 2)
{
  loop: if (++l < 5)
  {
    for (j = 2 ; P[j] <= Math.sqrt(k) ; ++j)
      if (k % P[j] == 0) break loop

    P[P.length] = k
  }
  else l = 0
}

另一个Python实现比死亡面具推销员的答案更直接,也更快:

import numpy as np

def prime_numbers(limit: int) -> list[int]:
    """Provide a list of all prime numbers <= the limit."""
    is_prime = np.full((limit + 1, ), True)
    is_prime[0:2] = False
    for n in range(2, limit + 1):
        if is_prime[n]:
            is_prime[n**2::n] = False
    return list(np.where(is_prime)[0])

你可以进一步优化,例如,排除2,或者硬编码更多质数,但我想保持简单。


*示例运行时比较(注意:我使用了其他实现的优化形式,见我的评论):

#include<iostream>
using namespace std;

void main()
{
    int num,i,j,prime;
    cout<<"Enter the upper limit :";
    cin>>num;

    cout<<"Prime numbers till "<<num<<" are :2, ";

    for(i=3;i<=num;i++)
    {
        prime=1;
        for(j=2;j<i;j++)
        {
            if(i%j==0)
            {
                prime=0;
                break;
            }
        }

        if(prime==1)
            cout<<i<<", ";

    }
}