给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
int rand7()
{
return ( rand5() + (rand5()%3) );
}
rand5() -返回1-5之间的值 rand5()%3 -返回0-2之间的值 所以,当加起来时,总价值将在1-7之间
其他回答
首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。
public int random7(){
Random random = new Random();
//function (1 + random.nextInt(5)) is given
int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11
//sumOfRandoms is between 28 and 56
int sumOfRandoms = random1_5 + random2_6 + random3_7 +
random4_8 + random5_9 + random6_10 + random7_11;
//result is number between 0 and 6, and
//equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
//equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
//equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
//equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
//equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
//equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
//equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
//It means that the probabilities of getting numbers between 0 and 6 are almost equal.
int result = sumOfRandoms % 7;
//we should add 1 to move the interval [0,6] to the interval [1,7]
return 1 + result;
}
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
我不喜欢从1开始的范围,所以我将从0开始:-)
unsigned rand5()
{
return rand() % 5;
}
unsigned rand7()
{
int r;
do
{
r = rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
r = r * 5 + rand5();
} while (r > 15623);
return r / 2232;
}
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]
为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)
它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:
def ranndomNo7():
import random
rand5 = random.randint(4) # Produces range: [0, 4]
rand7 = int(rand5 / 5 * 7) # /5, *7, +0.5 and floor()
return rand7
这不是很容易吗?