给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}

其他回答

该算法将rand5的调用次数减少到理论最小值7/5。通过产生接下来的5个rand7数字来调用它7次。

没有任何随机位的拒绝,也不可能一直等待结果。

#!/usr/bin/env ruby

# random integer from 1 to 5
def rand5
    STDERR.putc '.'
    1 + rand( 5 )
end

@bucket = 0
@bucket_size = 0

# random integer from 1 to 7
def rand7
    if @bucket_size == 0
        @bucket = 7.times.collect{ |d| rand5 * 5**d }.reduce( &:+ )
        @bucket_size = 5
    end

    next_rand7 = @bucket%7 + 1

    @bucket      /= 7
    @bucket_size -= 1

    return next_rand7
end

35.times.each{ putc rand7.to_s }
function Rand7
   put 200 into x
   repeat while x > 118
      put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
   end repeat
   return (x mod 7) + 1
end Rand7

3次调用Rand5,平均125次中只重复6次。

把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。

4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。

也许亚当·罗森菲尔德会好心地评论一下?

我(天真?)的想法是这样的:

积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。

为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:

(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7

rand7()函数如下:

(我让rand5的范围是0-4,rand7也是0-6。)

int rand7(){
  static int    a=0;
  static int    e=0;
  int       r;
  a = a * 5 + rand5();
  e = e + 5;        // added 5/7ths of a rand7 number
  if ( e<7 ){
    a = a * 5 + rand5();
    e = e + 5;  // another 5/7ths
  }
  r = a % 7;
  e = e - 7;        // removed a rand7 number
  a = a % 7;
  return r;
}

编辑:增加了1亿次试验的结果。

'Real' rand函数mod 5或7

rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046

我的边缘7

平均数看起来不错,数字分布也不错。

Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943

为什么这行不通?除了对rand5()的额外调用之外?

i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14

i = i % 7 + 1;