我读过各种关于测试中模仿和存根的文章,包括Martin Fowler的《Mocks Aren't Stubs》,但我仍然不理解其中的区别。


当前回答

模拟:帮助模拟和检查结果交互。这些交互 SUT调用它的依赖项来改变它们的状态。

存根:帮助模拟传入的交互。这些相互作用称为 SUT对其依赖项进行处理以获取输入数据。

来源:单元测试原则、实践和模式- Manning

其他回答

Mock只是测试行为,确保调用了特定的方法。 Stub是特定对象的可测试版本(本质上)。

你说的苹果方式是什么意思?

看了上面所有的解释,让我试着总结一下:

Stub:让测试运行的一段虚拟代码,但您并不关心它会发生什么。替代实际工作代码。 Mock:在测试中验证是否正确调用的一段虚拟代码。替代实际工作代码。 间谍:一段虚拟代码,用于拦截和验证对实际工作代码的某些调用,从而避免替换所有实际代码。

Stubs vs. Mocks Stubs provide specific answers to methods calls ex: myStubbedService.getValues() just return a String needed by the code under test used by code under test to isolate it cannot fail test ex: myStubbedService.getValues() just returns the stubbed value often implement abstract methods Mocks "superset" of stubs; can assert that certain methods are called ex: verify that myMockedService.getValues() is called only once used to test behaviour of code under test can fail test ex: verify that myMockedService.getValues() was called once; verification fails, because myMockedService.getValues() was not called by my tested code often mocks interfaces

存根是一个简单的伪对象。它只是确保测试顺利进行。 mock是更聪明的存根。您验证您的测试通过了它。

在我的回答中,我使用了python示例来说明差异。

Stub - Stubbing is a software development technique used to implement methods of classes early in the development life-cycle. They are used commonly as placeholders for implementation of a known interface, where the interface is finalized or known but the implementation is not yet known or finalized. You begin with stubs, which simply means that you only write the definition of a function down and leave the actual code for later. The advantage is that you won't forget methods and you can continue to think about your design while seeing it in code. You can also have your stub return a static response so that the response can be used by other parts of your code immediately. Stub objects provide a valid response, but it's static no matter what input you pass in, you'll always get the same response:

class Foo(object):
    def bar1(self):
        pass

    def bar2(self):
        #or ...
        raise NotImplementedError

    def bar3(self):
        #or return dummy data
        return "Dummy Data"

模拟对象用于模拟测试用例,它们验证在这些对象上调用了某些方法。模拟对象是以可控的方式模拟真实对象行为的模拟对象。您通常创建一个模拟对象来测试其他对象的行为。mock让我们模拟对于单元测试来说不可用或太笨重的资源。

mymodule.py:

import os
import os.path

def rm(filename):
    if os.path.isfile(filename):
        os.remove(filename)

test.py:

from mymodule import rm
import mock
import unittest

class RmTestCase(unittest.TestCase):
    @mock.patch('mymodule.os')
    def test_rm(self, mock_os):
        rm("any path")
        # test that rm called os.remove with the right parameters
        mock_os.remove.assert_called_with("any path")

if __name__ == '__main__':
    unittest.main()

这是一个非常基本的示例,它只运行rm并断言调用它的参数。您可以对对象使用mock,而不仅仅是这里所示的函数,您还可以返回一个值,这样模拟对象就可以用来替换存根进行测试。

更多关于unittest的信息。模拟,注意python 2。X mock不包含在unittest中,但它是一个可下载的模块,可以通过PIP (PIP install mock)下载。

我还读过Roy Osherove写的《单元测试的艺术》,我认为如果有一本类似的书是用Python和Python示例编写的,那就太棒了。如果有人知道这样的书,请分享。欢呼:)