我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

如果生成的UUID的数量遵循摩尔定律,那么在可预见的未来永远用不完GUID的印象是错误的。

对于2^128个uuid,只需要18个月* Log2(2^128) ~= 192年,我们就会用完所有uuid。

而且我相信(虽然没有任何统计证据),自从UUID被大规模采用以来,在过去的几年里,我们生成UUID的速度比摩尔定律所规定的要快得多。换句话说,我们可能只有不到192年的时间来处理UUID危机,这比宇宙末日要快得多。

但由于我们肯定不会在2012年底之前将它们耗尽,我们将把这个问题留给其他物种来担心。

其他回答

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。

for(begin; begin<end; begin)
    Console.WriteLine(System.Guid.NewGuid().ToString());

你不增加begin,所以条件begin < end总是为真。

你可以散列guid。这样,你就能更快地得到结果。

哦,当然,同时运行多个线程也是一个好主意,这样可以增加竞态条件在不同线程上两次生成相同GUID的机会。

这将持续不止几个小时。假设它以1 GHz的频率循环(实际上它不会—它会比1 GHz慢得多),它将运行10790283070806014188970年。大约是宇宙年龄的830亿倍。

假设摩尔定律成立,不运行这个程序,等几百年,在一台速度快数十亿倍的计算机上运行,会快得多。事实上,任何运行时间比CPU速度翻倍(大约18个月)要长的程序,如果您等待CPU速度提高并在运行之前购买一个新的CPU(除非您编写它是为了让它可以在新的硬件上挂起和恢复),那么它将更快地完成。

如果GUID冲突是一个问题,我建议使用ScottGuID代替。