我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

这里也有一个解决方案:

int main()
{
  QUuid uuid;
  while ( (uuid = QUuid::createUuid()) != QUuid::createUuid() ) { }
  std::cout << "Aha! I've found one! " << qPrintable( uuid.toString() ) << std::endl;
}

注意:需要Qt,但我保证如果你让它运行足够长的时间,它可能会找到一个。

(注:实际上,现在我正在看它,可能有一些关于生成算法的东西可以防止两个随后生成的uuid发生碰撞——但我有点怀疑)。

其他回答

你可以散列guid。这样,你就能更快地得到结果。

哦,当然,同时运行多个线程也是一个好主意,这样可以增加竞态条件在不同线程上两次生成相同GUID的机会。

当然guid也会发生碰撞。由于guid是128位的,只需生成其中的2^128 + 1个,根据鸽子洞原理,肯定会有碰撞。

但是当我们说一个GUID是唯一的时,我们真正的意思是键空间非常大,实际上不可能意外地生成两次相同的GUID(假设我们是随机生成GUID)。

如果随机生成n个guid序列,那么至少发生一次碰撞的概率大约是p(n) = 1 - exp(-n^2 / 2 * 2^128)(这是一个生日问题,可能的生日数量为2^128)。

   n     p(n)
2^30 1.69e-21
2^40 1.77e-15
2^50 1.86e-10
2^60 1.95e-03

为了使这些数字具体化,2^60 = 1.15e+18。所以,如果你每秒生成10亿个guid,你将需要36年才能生成2^60个随机guid,即使这样,你发生碰撞的概率仍然是1.95e-03。在接下来的36年里,你更有可能在生命中的某个时刻被谋杀(4.76e-03),而不是发现一次碰撞。祝你好运。

假设你有理由相信生成guid的算法并不是生成真正的随机数,而是以周期<< 2^128为周期循环。

例如,RFC4122方法用于派生guid,该guid固定某些位的值。

循环的证明取决于周期的可能大小。

对于小周期,哈希表(GUID) -> GUID与碰撞替换 如果guid不匹配(如果匹配则终止)可能是一种方法。也可以考虑只在随机的一小部分时间内进行替换。

最终,如果两次碰撞之间的最大周期足够大(并且事先不知道),任何方法都只能产生一个概率,即如果碰撞存在的话,就会发现碰撞。

请注意,如果生成guid的方法是基于时钟的(参见RFC),那么可能无法确定是否存在冲突,因为(a)您无法等待足够长的时间让时钟转一圈,或者(b)您无法在一个时钟滴答内请求足够的guid来强制碰撞。

或者,您可以显示Guid中位之间的统计关系,或者Guid之间位的相关性。这样的关系可能使得算法很有可能是有缺陷的,而不一定能找到实际的碰撞。

当然,如果您只是想证明Guids可以碰撞,那么答案就是数学证明,而不是程序。

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。

for(begin; begin<end; begin)
    Console.WriteLine(System.Guid.NewGuid().ToString());

你不增加begin,所以条件begin < end总是为真。