我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

Well if the running time of 83 billion years does not scare you, think that you will also need to store the generated GUIDs somewhere to check if you have a duplicate; storing 2^128 16-byte numbers would only require you to allocate 4951760157141521099596496896 terabytes of RAM upfront, so imagining you have a computer which could fit all that and that you somehow find a place to buy terabyte DIMMs at 10 grams each, combined they will weigh more than 8 Earth masses, so you can seriously shift it off the current orbit, before you even press "Run". Think twice!

其他回答

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。

数到2^128,雄心勃勃。

让我们想象一下,每台机器每秒可以计算2^32个id——不是那么雄心勃勃,因为它甚至不到每秒43亿个。让我们用2^32台机器来完成这个任务。此外,让2^32个文明各自投入相同的资源来完成任务。

到目前为止,我们每秒可以计数2^96个id,这意味着我们将计数2^32秒(136年多一点)。

现在,我们所需要的是获得4294967296个文明,每个文明都有4294967296台机器,每台机器每秒能计算4294967296个id,在未来136年左右的时间里,纯粹是为了这项任务——我建议我们现在就开始这项基本任务;-)

GUID理论上是非唯一的。下面是你的证明:

GUID是一个128位的数字 如果不重用旧的guid,就不能生成2^128 + 1或更多的guid

然而,如果太阳的全部能量输出都用于完成这一任务,那么它在完成之前就会变冷。

GUID可以使用许多不同的策略生成,其中一些策略采取特殊措施来确保给定的机器不会两次生成相同的GUID。在特定算法中发现冲突将表明生成guid的特定方法不好,但不能证明关于guid的任何一般情况。

就我个人而言,我认为“大爆炸”是由两个guid相撞引起的。

由于部分Guid生成是基于当前机器的时间,我的理论是获得一个副本Guid:

重新安装Windows 创建一个启动脚本,在Windows启动时将时间重置为2010-01-01 12:00:00。 就在启动脚本之后,它触发应用程序生成一个Guid。 克隆此Windows安装,以便排除后续启动过程中可能出现的任何细微差异。 用此映像重新映像硬盘驱动器,并启动几次机器。