我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

数到2^128,雄心勃勃。

让我们想象一下,每台机器每秒可以计算2^32个id——不是那么雄心勃勃,因为它甚至不到每秒43亿个。让我们用2^32台机器来完成这个任务。此外,让2^32个文明各自投入相同的资源来完成任务。

到目前为止,我们每秒可以计数2^96个id,这意味着我们将计数2^32秒(136年多一点)。

现在,我们所需要的是获得4294967296个文明,每个文明都有4294967296台机器,每台机器每秒能计算4294967296个id,在未来136年左右的时间里,纯粹是为了这项任务——我建议我们现在就开始这项基本任务;-)

其他回答

这个程序虽然有错误,但证明了GUID不是唯一的。那些试图证明相反情况的人没有抓住重点。这句话只是证明了一些GUID变体的弱实现。

GUID在定义上不一定是唯一的,它在定义上是高度唯一的。你刚才精炼了高度的意思。根据版本、实现者(MS或其他)、虚拟机的使用等不同,您的定义会发生很大变化。(见前文链接)

你可以缩短你的128位表来证明你的观点。最好的解决方案是使用哈希公式来缩短重复的表,然后在哈希发生冲突时使用完整的值,并基于此重新生成一个GUID。如果从不同的位置运行,则将哈希/完整密钥对存储在一个中心位置。

Ps:如果目标只是生成x个不同的值,那么创建一个这个宽度的哈希表,并检查哈希值。

如果你担心独特性,你可以购买新的guid,这样你就可以扔掉旧的guid。如果你愿意,我可以把一些放在易趣网上。

这将持续不止几个小时。假设它以1 GHz的频率循环(实际上它不会—它会比1 GHz慢得多),它将运行10790283070806014188970年。大约是宇宙年龄的830亿倍。

假设摩尔定律成立,不运行这个程序,等几百年,在一台速度快数十亿倍的计算机上运行,会快得多。事实上,任何运行时间比CPU速度翻倍(大约18个月)要长的程序,如果您等待CPU速度提高并在运行之前购买一个新的CPU(除非您编写它是为了让它可以在新的硬件上挂起和恢复),那么它将更快地完成。

当然guid也会发生碰撞。由于guid是128位的,只需生成其中的2^128 + 1个,根据鸽子洞原理,肯定会有碰撞。

但是当我们说一个GUID是唯一的时,我们真正的意思是键空间非常大,实际上不可能意外地生成两次相同的GUID(假设我们是随机生成GUID)。

如果随机生成n个guid序列,那么至少发生一次碰撞的概率大约是p(n) = 1 - exp(-n^2 / 2 * 2^128)(这是一个生日问题,可能的生日数量为2^128)。

   n     p(n)
2^30 1.69e-21
2^40 1.77e-15
2^50 1.86e-10
2^60 1.95e-03

为了使这些数字具体化,2^60 = 1.15e+18。所以,如果你每秒生成10亿个guid,你将需要36年才能生成2^60个随机guid,即使这样,你发生碰撞的概率仍然是1.95e-03。在接下来的36年里,你更有可能在生命中的某个时刻被谋杀(4.76e-03),而不是发现一次碰撞。祝你好运。

就我个人而言,我认为“大爆炸”是由两个guid相撞引起的。