我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

guid是124位,因为4位保存版本号。

其他回答

你可以用量子bogosort算法的变体在O(1)时间内证明这一点。

Guid g1 = Guid.NewGuid();
Guid g2 = Guid.NewGuid();
if(g1 != g2) Universe.Current.Destroy();

如果生成的UUID的数量遵循摩尔定律,那么在可预见的未来永远用不完GUID的印象是错误的。

对于2^128个uuid,只需要18个月* Log2(2^128) ~= 192年,我们就会用完所有uuid。

而且我相信(虽然没有任何统计证据),自从UUID被大规模采用以来,在过去的几年里,我们生成UUID的速度比摩尔定律所规定的要快得多。换句话说,我们可能只有不到192年的时间来处理UUID危机,这比宇宙末日要快得多。

但由于我们肯定不会在2012年底之前将它们耗尽,我们将把这个问题留给其他物种来担心。

数到2^128,雄心勃勃。

让我们想象一下,每台机器每秒可以计算2^32个id——不是那么雄心勃勃,因为它甚至不到每秒43亿个。让我们用2^32台机器来完成这个任务。此外,让2^32个文明各自投入相同的资源来完成任务。

到目前为止,我们每秒可以计数2^96个id,这意味着我们将计数2^32秒(136年多一点)。

现在,我们所需要的是获得4294967296个文明,每个文明都有4294967296台机器,每台机器每秒能计算4294967296个id,在未来136年左右的时间里,纯粹是为了这项任务——我建议我们现在就开始这项基本任务;-)

GUID理论上是非唯一的。下面是你的证明:

GUID是一个128位的数字 如果不重用旧的guid,就不能生成2^128 + 1或更多的guid

然而,如果太阳的全部能量输出都用于完成这一任务,那么它在完成之前就会变冷。

GUID可以使用许多不同的策略生成,其中一些策略采取特殊措施来确保给定的机器不会两次生成相同的GUID。在特定算法中发现冲突将表明生成guid的特定方法不好,但不能证明关于guid的任何一般情况。

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。