我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

就我个人而言,我认为“大爆炸”是由两个guid相撞引起的。

其他回答

证明GUID不是唯一的唯一解决方案是建立一个World GUID池。每次在某个地方生成GUID时,都应该将其注册到组织。或者,我们可能包括一个标准化,所有GUID生成器都需要自动注册它,为此它需要一个活跃的互联网连接!

这里也有一个解决方案:

int main()
{
  QUuid uuid;
  while ( (uuid = QUuid::createUuid()) != QUuid::createUuid() ) { }
  std::cout << "Aha! I've found one! " << qPrintable( uuid.toString() ) << std::endl;
}

注意:需要Qt,但我保证如果你让它运行足够长的时间,它可能会找到一个。

(注:实际上,现在我正在看它,可能有一些关于生成算法的东西可以防止两个随后生成的uuid发生碰撞——但我有点怀疑)。

假设你有理由相信生成guid的算法并不是生成真正的随机数,而是以周期<< 2^128为周期循环。

例如,RFC4122方法用于派生guid,该guid固定某些位的值。

循环的证明取决于周期的可能大小。

对于小周期,哈希表(GUID) -> GUID与碰撞替换 如果guid不匹配(如果匹配则终止)可能是一种方法。也可以考虑只在随机的一小部分时间内进行替换。

最终,如果两次碰撞之间的最大周期足够大(并且事先不知道),任何方法都只能产生一个概率,即如果碰撞存在的话,就会发现碰撞。

请注意,如果生成guid的方法是基于时钟的(参见RFC),那么可能无法确定是否存在冲突,因为(a)您无法等待足够长的时间让时钟转一圈,或者(b)您无法在一个时钟滴答内请求足够的guid来强制碰撞。

或者,您可以显示Guid中位之间的统计关系,或者Guid之间位的相关性。这样的关系可能使得算法很有可能是有缺陷的,而不一定能找到实际的碰撞。

当然,如果您只是想证明Guids可以碰撞,那么答案就是数学证明,而不是程序。

Go to the cryogenics lab in the New York City. Freeze yourself for (roughly) 1990 years. Get a job at Planet Express. Buy a brand-new CPU. Build a computer, run the program, and place it in the safe place with an pseudo-perpetual motion machine like the doomsday machine. Wait until the time machine is invented. Jump to the future using the time machine. If you bought 1YHz 128bit CPU, go to 3,938,453,320 days 20 hours 15 minutes 38 seconds 463 ms 463 μs 374 ns 607 ps after when you started to run the program. ...? PROFIT!!!

... 即使你的1YHz CPU是1GHz CPU的1,000,000,000,000,000倍(如果你更喜欢使用二进制前缀,则为1,125,899,906,842,624倍),也至少需要10,783,127年。

因此,与其等着计算结束,不如去喂那些因为其他n只鸽子夺走了它们的家而失去家园的鸽子。:(

或者,你可以等到128位量子计算机被发明出来。然后,您可以通过在合理的时间内(可能)使用您的程序来证明GUID不是唯一的。

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。