受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
顺时针或逆时针旋转2D数组的常用方法。
顺时针旋转 首先颠倒上下,然后交换对称 1 2 3 7 8 9 7 4 4 5 6 => 4 5 6 => 8 5 7 8 9 1 2 3 9 6 3
void rotate(vector<vector<int> > &matrix) {
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
逆时针方向旋转 首先从左到右反向,然后交换对称 1 2 3 3 2 1 3 6 9 4 5 6 => 6 5 4 => 2 5 7 8 9 9 8 7 1 4 7
void anti_rotate(vector<vector<int> > &matrix) {
for (auto vi : matrix) reverse(vi.begin(), vi.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
其他回答
正如我在上一篇文章中所说的,这里有一些c#代码,可以为任何大小的矩阵实现O(1)矩阵旋转。为了简洁性和可读性,没有错误检查或范围检查。代码:
static void Main (string [] args)
{
int [,]
// create an arbitrary matrix
m = {{0, 1}, {2, 3}, {4, 5}};
Matrix
// create wrappers for the data
m1 = new Matrix (m),
m2 = new Matrix (m),
m3 = new Matrix (m);
// rotate the matricies in various ways - all are O(1)
m1.RotateClockwise90 ();
m2.Rotate180 ();
m3.RotateAnitclockwise90 ();
// output the result of transforms
System.Diagnostics.Trace.WriteLine (m1.ToString ());
System.Diagnostics.Trace.WriteLine (m2.ToString ());
System.Diagnostics.Trace.WriteLine (m3.ToString ());
}
class Matrix
{
enum Rotation
{
None,
Clockwise90,
Clockwise180,
Clockwise270
}
public Matrix (int [,] matrix)
{
m_matrix = matrix;
m_rotation = Rotation.None;
}
// the transformation routines
public void RotateClockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 1) & 3);
}
public void Rotate180 ()
{
m_rotation = (Rotation) (((int) m_rotation + 2) & 3);
}
public void RotateAnitclockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 3) & 3);
}
// accessor property to make class look like a two dimensional array
public int this [int row, int column]
{
get
{
int
value = 0;
switch (m_rotation)
{
case Rotation.None:
value = m_matrix [row, column];
break;
case Rotation.Clockwise90:
value = m_matrix [m_matrix.GetUpperBound (0) - column, row];
break;
case Rotation.Clockwise180:
value = m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column];
break;
case Rotation.Clockwise270:
value = m_matrix [column, m_matrix.GetUpperBound (1) - row];
break;
}
return value;
}
set
{
switch (m_rotation)
{
case Rotation.None:
m_matrix [row, column] = value;
break;
case Rotation.Clockwise90:
m_matrix [m_matrix.GetUpperBound (0) - column, row] = value;
break;
case Rotation.Clockwise180:
m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column] = value;
break;
case Rotation.Clockwise270:
m_matrix [column, m_matrix.GetUpperBound (1) - row] = value;
break;
}
}
}
// creates a string with the matrix values
public override string ToString ()
{
int
num_rows = 0,
num_columns = 0;
switch (m_rotation)
{
case Rotation.None:
case Rotation.Clockwise180:
num_rows = m_matrix.GetUpperBound (0);
num_columns = m_matrix.GetUpperBound (1);
break;
case Rotation.Clockwise90:
case Rotation.Clockwise270:
num_rows = m_matrix.GetUpperBound (1);
num_columns = m_matrix.GetUpperBound (0);
break;
}
StringBuilder
output = new StringBuilder ();
output.Append ("{");
for (int row = 0 ; row <= num_rows ; ++row)
{
if (row != 0)
{
output.Append (", ");
}
output.Append ("{");
for (int column = 0 ; column <= num_columns ; ++column)
{
if (column != 0)
{
output.Append (", ");
}
output.Append (this [row, column].ToString ());
}
output.Append ("}");
}
output.Append ("}");
return output.ToString ();
}
int [,]
// the original matrix
m_matrix;
Rotation
// the current view of the matrix
m_rotation;
}
好的,我把手举起来,当旋转时,它实际上不会对原始数组做任何修改。但是,在面向对象系统中,只要对象看起来像是被旋转到类的客户端,这就无关紧要了。目前,Matrix类使用对原始数组数据的引用,因此改变m1的任何值也将改变m2和m3。对构造函数稍加更改,创建一个新数组并将值复制到该数组中,就可以将其整理出来。
已经有很多答案了,我发现两个声称O(1)时间复杂度。真正的O(1)算法是保持数组存储不变,并改变索引其元素的方式。这里的目标是不消耗额外的内存,也不需要额外的时间来迭代数据。
旋转90度,-90度和180度是简单的转换,只要你知道你的2D数组中有多少行和列就可以执行;要将任何向量旋转90度,交换轴并与Y轴相反。对于-90度,交换轴和X轴。对于180度,两个坐标轴都是负的,不交换。
进一步的转换是可能的,例如通过独立地否定轴来水平和/或垂直地镜像。
这可以通过访问器方法来实现。下面的例子是JavaScript函数,但是这些概念同样适用于所有语言。
//按列/行顺序获取数组元素 var getArray2d =函数(a, x, y) { 返回一个[y] [x]; }; / /演示 Var arr = [ [5,4,6], [1,7,9], [- 2,11,0], [8,21, -3], [3, -1, 2] ]; Var newar = []; arr[0]. foreach (() => newarr。push(新数组(arr.length))); For (var I = 0;I < newar .length;我+ +){ For (var j = 0;J < newarr[0].length;j + +) { newarr[i][j] = getArray2d(arr, i, j); } } console.log (newarr);
// Get an array element rotated 90 degrees clockwise function getArray2dCW(a, x, y) { var t = x; x = y; y = a.length - t - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCW(arr, i, j); } } console.log(newarr);
// Get an array element rotated 90 degrees counter-clockwise function getArray2dCCW(a, x, y) { var t = x; x = a[0].length - y - 1; y = t; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCCW(arr, i, j); } } console.log(newarr);
// Get an array element rotated 180 degrees function getArray2d180(a, x, y) { x = a[0].length - x - 1; y = a.length - y - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr.forEach(() => newarr.push(new Array(arr[0].length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2d180(arr, i, j); } } console.log(newarr);
这段代码假设有一个嵌套数组的数组,其中每个内部数组都是一行。
该方法允许您读取(或写入)元素(甚至是随机顺序),就像数组已经旋转或转换一样。现在只要选择正确的函数来调用,可能是通过引用,然后就可以了!
这个概念可以扩展为通过访问器方法附加地(非破坏性地)应用转换。包括任意角度旋转和缩放。
时间- O(N),空间- O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
int last = n - 1 - i;
for (int j = i; j < last; j++) {
int top = matrix[i][j];
matrix[i][j] = matrix[last - j][i];
matrix[last - j][i] = matrix[last][last - j];
matrix[last][last - j] = matrix[j][last];
matrix[j][last] = top;
}
}
}
一些人已经举了一些例子,其中涉及到创建一个新数组。
还有一些需要考虑的事情:
(a)不实际移动数据,只需以不同的方式遍历“旋转”的数组。
(b)就地轮换可能有点棘手。您需要一点空白的地方(大概相当于一行或一列的大小)。有一篇古老的ACM论文是关于进行原地转置的(http://doi.acm.org/10.1145/355719.355729),但是他们的示例代码是令人讨厌的充满goto的FORTRAN。
附录:
http://doi.acm.org/10.1145/355611.355612是另一种更优越的就地转置算法。
O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)
旋转+90:
转置 反转每行
旋转-90:
方法一:
转置 反转每一列
方法二:
反转每行 转置
旋转180度:
方法一:旋转+90两次
方法2:反转每行,然后反转每列(转置)
旋转-180度:
方法一:旋转-90度2次
方法二:先反转每一列,再反转每一行
方法三:旋转+180,因为它们是相同的