受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

正如我在上一篇文章中所说的,这里有一些c#代码,可以为任何大小的矩阵实现O(1)矩阵旋转。为了简洁性和可读性,没有错误检查或范围检查。代码:

static void Main (string [] args)
{
  int [,]
    //  create an arbitrary matrix
    m = {{0, 1}, {2, 3}, {4, 5}};

  Matrix
    //  create wrappers for the data
    m1 = new Matrix (m),
    m2 = new Matrix (m),
    m3 = new Matrix (m);

  //  rotate the matricies in various ways - all are O(1)
  m1.RotateClockwise90 ();
  m2.Rotate180 ();
  m3.RotateAnitclockwise90 ();

  //  output the result of transforms
  System.Diagnostics.Trace.WriteLine (m1.ToString ());
  System.Diagnostics.Trace.WriteLine (m2.ToString ());
  System.Diagnostics.Trace.WriteLine (m3.ToString ());
}

class Matrix
{
  enum Rotation
  {
    None,
    Clockwise90,
    Clockwise180,
    Clockwise270
  }

  public Matrix (int [,] matrix)
  {
    m_matrix = matrix;
    m_rotation = Rotation.None;
  }

  //  the transformation routines
  public void RotateClockwise90 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 1) & 3);
  }

  public void Rotate180 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 2) & 3);
  }

  public void RotateAnitclockwise90 ()
  {
    m_rotation = (Rotation) (((int) m_rotation + 3) & 3);
  }

  //  accessor property to make class look like a two dimensional array
  public int this [int row, int column]
  {
    get
    {
      int
        value = 0;

      switch (m_rotation)
      {
      case Rotation.None:
        value = m_matrix [row, column];
        break;

      case Rotation.Clockwise90:
        value = m_matrix [m_matrix.GetUpperBound (0) - column, row];
        break;

      case Rotation.Clockwise180:
        value = m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column];
        break;

      case Rotation.Clockwise270:
        value = m_matrix [column, m_matrix.GetUpperBound (1) - row];
        break;
      }

      return value;
    }

    set
    {
      switch (m_rotation)
      {
      case Rotation.None:
        m_matrix [row, column] = value;
        break;

      case Rotation.Clockwise90:
        m_matrix [m_matrix.GetUpperBound (0) - column, row] = value;
        break;

      case Rotation.Clockwise180:
        m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column] = value;
        break;

      case Rotation.Clockwise270:
        m_matrix [column, m_matrix.GetUpperBound (1) - row] = value;
        break;
      }
    }
  }

  //  creates a string with the matrix values
  public override string ToString ()
  {
    int
      num_rows = 0,
      num_columns = 0;

    switch (m_rotation)
    {
    case Rotation.None:
    case Rotation.Clockwise180:
      num_rows = m_matrix.GetUpperBound (0);
      num_columns = m_matrix.GetUpperBound (1);
      break;

    case Rotation.Clockwise90:
    case Rotation.Clockwise270:
      num_rows = m_matrix.GetUpperBound (1);
      num_columns = m_matrix.GetUpperBound (0);
      break;
    }

    StringBuilder
      output = new StringBuilder ();

    output.Append ("{");

    for (int row = 0 ; row <= num_rows ; ++row)
    {
      if (row != 0)
      {
        output.Append (", ");
      }

      output.Append ("{");

      for (int column = 0 ; column <= num_columns ; ++column)
      {
        if (column != 0)
        {
          output.Append (", ");
        }

        output.Append (this [row, column].ToString ());
      }

      output.Append ("}");
    }

    output.Append ("}");

    return output.ToString ();
  }

  int [,]
    //  the original matrix
    m_matrix;

  Rotation
    //  the current view of the matrix
    m_rotation;
}

好的,我把手举起来,当旋转时,它实际上不会对原始数组做任何修改。但是,在面向对象系统中,只要对象看起来像是被旋转到类的客户端,这就无关紧要了。目前,Matrix类使用对原始数组数据的引用,因此改变m1的任何值也将改变m2和m3。对构造函数稍加更改,创建一个新数组并将值复制到该数组中,就可以将其整理出来。

其他回答

为新手程序员,在纯c++。(宝蓝的东西)

#include<iostream.h>
#include<conio.h>

int main()
{
    clrscr();

    int arr[10][10];        // 2d array that holds input elements 
    int result[10][10];     //holds result

    int m,n;                //rows and columns of arr[][]
    int x,y;                //rows and columns of result[][]

    int i,j;                //loop variables
    int t;                  //temporary , holds data while conversion

    cout<<"Enter no. of rows and columns of array: ";
    cin>>m>>n;
    cout<<"\nEnter elements of array: \n\n";
    for(i = 0; i < m; i++)
    {
        for(j = 0; j<n ; j++)
        {
          cin>>arr[i][j];         // input array elements from user
        }
    }


   //rotating matrix by +90 degrees

    x = n ;                      //for non-square matrix
    y = m ;     

    for(i = 0; i < x; i++)
    {  t = m-1;                     // to create required array bounds
       for(j = 0; j < y; j++)
       {
          result[i][j] = arr[t][i];
          t--;
       }
   }

   //print result

   cout<<"\nRotated matrix is: \n\n";
   for(i = 0; i < x; i++)
   {
       for(j = 0; j < y; j++)
       {
             cout<<result[i][j]<<" ";
       }
       cout<<"\n";
   }

   getch();
   return 0;
}

下面是一个c#静态泛型方法,它可以为您完成这项工作。变量的名称很好,所以您可以很容易地理解算法的思想。

private static T[,] Rotate180 <T> (T[,] matrix)
{
    var height = matrix.GetLength (0);
    var width = matrix.GetLength (1);
    var answer = new T[height, width];

    for (int y = 0; y < height / 2; y++)
    {
        int topY = y;
        int bottomY = height - 1 - y;
        for (int topX = 0; topX < width; topX++)
        {
            var bottomX = width - topX - 1;
            answer[topY, topX] = matrix[bottomY, bottomX];
            answer[bottomY, bottomX] = matrix[topY, topX];
        }
    }

    if (height % 2 == 0)
        return answer;

    var centerY = height / 2;
    for (int leftX = 0; leftX < Mathf.CeilToInt(width / 2f); leftX++)
    {
        var rightX = width - 1 - leftX;
        answer[centerY, leftX] = matrix[centerY, rightX];
        answer[centerY, rightX] = matrix[centerY, leftX];
    }

    return answer;
}

O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)

旋转+90:

转置 反转每行

旋转-90:

方法一:

转置 反转每一列

方法二:

反转每行 转置

旋转180度:

方法一:旋转+90两次

方法2:反转每行,然后反转每列(转置)

旋转-180度:

方法一:旋转-90度2次

方法二:先反转每一列,再反转每一行

方法三:旋转+180,因为它们是相同的

#转置是Ruby的Array类的标准方法,因此:

% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]] 
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]

实现是一个用c写的n^2转置函数,你可以在这里看到: http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose 通过选择“点击切换源”旁边的“转置”。

我记得比O(n^2)的解更好,但只适用于特殊构造的矩阵(如稀疏矩阵)

可以做递归相当干净,这里是我的实现在golang!

在没有额外内存的情况下递归地旋转go golang中的NXN矩阵

func rot90(a [][]int) {
    n := len(a)
    if n == 1 {
        return
    }
    for i := 0; i < n; i++ {
        a[0][i], a[n-1-i][n-1] = a[n-1-i][n-1], a[0][i]
    }
    rot90(a[1:])
}