我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是一个使用c#的函数式示例:

            Func<long>[] backwards = new Func<long>[input.Length];
            Func<long>[] forwards = new Func<long>[input.Length];

            for (int i = 0; i < input.Length; ++i)
            {
                var localIndex = i;
                backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
                forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
            }

            var output = new long[input.Length];
            for (int i = 0; i < input.Length; ++i)
            {
                if (0 == i)
                {
                    output[i] = forwards[i + 1]();
                }
                else if (input.Length - 1 == i)
                {
                    output[i] = backwards[i - 1]();
                }
                else
                {
                    output[i] = forwards[i + 1]() * backwards[i - 1]();
                }
            }

我不完全确定这是O(n),因为所创建的Funcs是半递归的,但我的测试似乎表明它在时间上是O(n)。

其他回答

我们可以先从列表中排除nums[j](其中j != i),然后得到其余部分的乘积;下面是python解决这个难题的方法:

from functools import reduce
def products(nums):
    return [ reduce(lambda x,y: x * y, nums[:i] + nums[i+1:]) for i in range(len(nums)) ]
print(products([1, 2, 3, 4, 5]))

[out]
[120, 60, 40, 30, 24]

我用Javascript想出了两个解决方案,一个有除法,一个没有

//不除法 函数methodOne(arr) { 加勒比海盗。Map (item => { 加勒比海盗。Reduce ((result, num) => { If (num !== item) { 结果=结果* num; } 返回结果; }, 1) }); } //使用除法 函数methodTwo(arr) { Var mul = arr。Reduce ((result, num) => { 结果=结果* num; 返回结果; }, 1) 加勒比海盗。Map (item => mul/item); } console.log(methodOne([1,2,3,4,5])); console.log(methodTwo([1,2,3,4,5]));

我们正在分解数组的元素,首先从下标之前开始,即前缀,然后是下标或后缀之后

class Solution:

   def productExceptSelf(nums):

      length = len(nums)


      result = [1] * length


      prefix_product = 1


      postfix_product = 1

# we initialize the result and products


      for i in range(length)

      result[i] *= prefix_product


       prefix_product *= nums[i]

#we multiply the result by each number before the index

      for i in range(length-1,-1,-1)

      result[i] *= postfix_product


      postfix_product *= nums[i]

#same for after index
   return result

抱歉,走路时用手机

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)
def productify(arr, prod, i):
    if i < len(arr):
        prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
        retval = productify(arr, prod, i + 1)
        prod[i] *= retval
        return retval * arr[i]
    return 1

if __name__ == "__main__":
    arr = [1, 2, 3, 4, 5]
    prod = []
    productify(arr, prod, 0)
    print(prod)