我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是一个使用c#的函数式示例:

            Func<long>[] backwards = new Func<long>[input.Length];
            Func<long>[] forwards = new Func<long>[input.Length];

            for (int i = 0; i < input.Length; ++i)
            {
                var localIndex = i;
                backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
                forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
            }

            var output = new long[input.Length];
            for (int i = 0; i < input.Length; ++i)
            {
                if (0 == i)
                {
                    output[i] = forwards[i + 1]();
                }
                else if (input.Length - 1 == i)
                {
                    output[i] = backwards[i - 1]();
                }
                else
                {
                    output[i] = forwards[i + 1]() * backwards[i - 1]();
                }
            }

我不完全确定这是O(n),因为所创建的Funcs是半递归的,但我的测试似乎表明它在时间上是O(n)。

其他回答

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

下面是一个C实现 O(n)时间复杂度。 输入

#include<stdio.h>
int main()
{
    int x;
    printf("Enter The Size of Array : ");
    scanf("%d",&x);
    int array[x-1],i ;
    printf("Enter The Value of Array : \n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Array[%d] = ",i);
          scanf("%d",&array[i]);
      }
    int left[x-1] , right[x-1];
    left[0] = 1 ;
    right[x-1] = 1 ;
      for( i = 1 ; i <= x-1 ; i++)
      {
          left[i] = left[i-1] * array[i-1];
      }
    printf("\nThis is Multiplication of array[i-1] and left[i-1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Left[%d] = %d\n",i,array[i],i,left[i]);
      }
      for( i = x-2 ; i >= 0 ; i--)
      {
          right[i] = right[i+1] * array[i+1];
      }
   printf("\nThis is Multiplication of array[i+1] and right[i+1]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
        printf("Array[%d] = %d , Right[%d] = %d\n",i,array[i],i,right[i]);
      }
    printf("\nThis is Multiplication of Right[i] * Left[i]\n");
      for( i = 0 ; i <= x-1 ; i++)
      {
          printf("Right[%d] * left[%d] = %d * %d = %d\n",i,i,right[i],left[i],right[i]*left[i]);
      }
    return 0 ;
}

输出

    Enter The Size of Array : 5
    Enter The Value of Array :
    Array[0] = 1
    Array[1] = 2
    Array[2] = 3
    Array[3] = 4
    Array[4] = 5

    This is Multiplication of array[i-1] and left[i-1]
    Array[0] = 1 , Left[0] = 1
    Array[1] = 2 , Left[1] = 1
    Array[2] = 3 , Left[2] = 2
    Array[3] = 4 , Left[3] = 6
    Array[4] = 5 , Left[4] = 24

    This is Multiplication of array[i+1] and right[i+1]
    Array[0] = 1 , Right[0] = 120
    Array[1] = 2 , Right[1] = 60
    Array[2] = 3 , Right[2] = 20
    Array[3] = 4 , Right[3] = 5
    Array[4] = 5 , Right[4] = 1

    This is Multiplication of Right[i] * Left[i]
    Right[0] * left[0] = 120 * 1 = 120
    Right[1] * left[1] = 60 * 1 = 60
    Right[2] * left[2] = 20 * 2 = 40
    Right[3] * left[3] = 5 * 6 = 30
    Right[4] * left[4] = 1 * 24 = 24

    Process returned 0 (0x0)   execution time : 6.548 s
    Press any key to continue.

下面是我用现代c++编写的解决方案。它使用std::transform,很容易记住。

在线代码(wandbox)。

#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;

vector<int>& multiply_up(vector<int>& v){
    v.insert(v.begin(),1);
    transform(v.begin()+1, v.end()
             ,v.begin()
             ,v.begin()+1
             ,[](auto const& a, auto const& b) { return b*a; }
             );
    v.pop_back();
    return v;
}

int main() {
    vector<int> v = {1,2,3,4,5};
    auto vr = v;

    reverse(vr.begin(),vr.end());
    multiply_up(v);
    multiply_up(vr);
    reverse(vr.begin(),vr.end());

    transform(v.begin(),v.end()
             ,vr.begin()
             ,v.begin()
             ,[](auto const& a, auto const& b) { return b*a; }
             );

    for(auto& i: v) cout << i << " "; 
}

我的第一次尝试,用Python。O (2 n):

def product(l):
    product = 1
    num_zeroes = 0
    pos_zero = -1

    # Multiply all and set positions
    for i, x in enumerate(l):
        if x != 0:
            product *= x
            l[i] = 1.0/x
        else:
            num_zeroes += 1
            pos_zero = i

    # Warning! Zeroes ahead!
    if num_zeroes > 0:
        l = [0] * len(l)

        if num_zeroes == 1:
            l[pos_zero] = product

    else:
        # Now set the definitive elements
        for i in range(len(l)):
            l[i] = int(l[i] * product)

    return l


if __name__ == "__main__":
    print("[0, 0, 4] = " + str(product([0, 0, 4])))
    print("[3, 0, 4] = " + str(product([3, 0, 4])))
    print("[1, 2, 3] = " + str(product([1, 2, 3])))
    print("[2, 3, 4, 5, 6] = " + str(product([2, 3, 4, 5, 6])))
    print("[2, 1, 2, 2, 3] = " + str(product([2, 1, 2, 2, 3])))

输出:

[0, 0, 4] = [0, 0, 0]
[3, 0, 4] = [0, 12, 0]
[1, 2, 3] = [6, 3, 2]
[2, 3, 4, 5, 6] = [360, 240, 180, 144, 120]
[2, 1, 2, 2, 3] = [12, 24, 12, 12, 8]

还有一个O(N^(3/2))非最优解。不过,这很有趣。

首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。

例子:

4, 6, 7, 2, 3, 1, 9, 5, 8

部分结果: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360

要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。