我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是一个使用c#的函数式示例:

            Func<long>[] backwards = new Func<long>[input.Length];
            Func<long>[] forwards = new Func<long>[input.Length];

            for (int i = 0; i < input.Length; ++i)
            {
                var localIndex = i;
                backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
                forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
            }

            var output = new long[input.Length];
            for (int i = 0; i < input.Length; ++i)
            {
                if (0 == i)
                {
                    output[i] = forwards[i + 1]();
                }
                else if (input.Length - 1 == i)
                {
                    output[i] = backwards[i - 1]();
                }
                else
                {
                    output[i] = forwards[i + 1]() * backwards[i - 1]();
                }
            }

我不完全确定这是O(n),因为所创建的Funcs是半递归的,但我的测试似乎表明它在时间上是O(n)。

其他回答

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}

下面是Ruby中的一行程序解决方案。

全国矿工工会。映射{|n| (num - [n]).inject(:*)}

    int[] arr1 = { 1, 2, 3, 4, 5 };
    int[] product = new int[arr1.Length];              

    for (int i = 0; i < arr1.Length; i++)
    {
        for (int j = 0; j < product.Length; j++)
        {
            if (i != j)
            {
                product[j] = product[j] == 0 ? arr1[i] : product[j] * arr1[i];
            }
        }
    }

左旅行->右和保持保存产品。称之为过去。- > O (n) 旅行右->左保持产品。称之为未来。- > O (n) 结果[i] =过去[i-1] *将来[i+1] -> O(n) 过去[-1]= 1;和未来(n + 1) = 1;

O(n)

还有一个解决方案,使用除法。有两次遍历。 把所有元素相乘,然后除以每个元素。