我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

这是我的代码:

int multiply(int a[],int n,int nextproduct,int i)
{
    int prevproduct=1;
    if(i>=n)
        return prevproduct;
    prevproduct=multiply(a,n,nextproduct*a[i],i+1);
    printf(" i=%d > %d\n",i,prevproduct*nextproduct);
    return prevproduct*a[i];
}

int main()
{
    int a[]={2,4,1,3,5};
    multiply(a,5,1,0);
    return 0;
}

其他回答

//这是Java中的递归解决方案 //从main product(a,1,0)调用如下;

public static double product(double[] a, double fwdprod, int index){
    double revprod = 1;
    if (index < a.length){
        revprod = product2(a, fwdprod*a[index], index+1);
        double cur = a[index];
        a[index] = fwdprod * revprod;
        revprod *= cur;
    }
    return revprod;
}

在这里添加我的javascript解决方案,因为我没有发现任何人建议这样做。 除法是什么,除了数从另一个数中得到一个数的次数吗?我计算了整个数组的乘积,然后遍历每个元素,并减去当前元素直到0:

//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
  var res = [];
  var totalProduct = 1;
  //calculate the total product
  for(var i = 0; i < input.length; i++){
    totalProduct = totalProduct * input[i];
  }
  //populate the result array by "dividing" each value
  for(var i = 0; i < input.length; i++){
    var timesSubstracted = 0;
    var divisor = input[i];
    var dividend = totalProduct;
    while(divisor <= dividend){
      dividend = dividend - divisor;
      timesSubstracted++;
    }
    res.push(timesSubstracted);
  }
  return res;
}

鬼鬼祟祟地绕过“不划分”规则:

sum = 0.0
for i in range(a):
  sum += log(a[i])

for i in range(a):
  output[i] = exp(sum - log(a[i]))

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs
def productify(arr, prod, i):
    if i < len(arr):
        prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
        retval = productify(arr, prod, i + 1)
        prod[i] *= retval
        return retval * arr[i]
    return 1

if __name__ == "__main__":
    arr = [1, 2, 3, 4, 5]
    prod = []
    productify(arr, prod, 0)
    print(prod)