我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

预先计算每个元素左右两边数字的乘积。 对于每个元素,期望值都是它相邻元素乘积的乘积。

#include <stdio.h>

unsigned array[5] = { 1,2,3,4,5};

int main(void)
{
unsigned idx;

unsigned left[5]
        , right[5];
left[0] = 1;
right[4] = 1;

        /* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
        left[idx] = left[idx-1] * array[idx-1];
        }

        /* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
        right[idx] = right[idx+1] * array[idx+1];
        }

for (idx=0; idx <5 ; idx++) {
        printf("[%u] Product(%u*%u) = %u\n"
                , idx, left[idx] , right[idx]  , left[idx] * right[idx]  );
        }

return 0;
}

结果:

$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24

(更新:现在我仔细看,这使用与Michael Anderson, Daniel Migowski和上面的聚基因润滑剂相同的方法)

其他回答

以下是线性O(n)时间内的简单Scala版本:

def getProductEff(in:Seq[Int]):Seq[Int] = {

   //create a list which has product of every element to the left of this element
   val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2

   //create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse
   val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse

   //merge the two list by product at index
   in.indices.map(i => fromLeft(i) * fromRight(i))

}

这是可行的,因为本质上答案是一个数组,它是左右所有元素的乘积。

这里有一个小的递归函数(在c++中)来进行修改。它需要O(n)额外的空间(在堆栈上)。假设数组在a中,N表示数组长度,我们有:

int multiply(int *a, int fwdProduct, int indx) {
    int revProduct = 1;
    if (indx < N) {
       revProduct = multiply(a, fwdProduct*a[indx], indx+1);
       int cur = a[indx];
       a[indx] = fwdProduct * revProduct;
       revProduct *= cur;
    }
    return revProduct;
}

我用Javascript想出了两个解决方案,一个有除法,一个没有

//不除法 函数methodOne(arr) { 加勒比海盗。Map (item => { 加勒比海盗。Reduce ((result, num) => { If (num !== item) { 结果=结果* num; } 返回结果; }, 1) }); } //使用除法 函数methodTwo(arr) { Var mul = arr。Reduce ((result, num) => { 结果=结果* num; 返回结果; }, 1) 加勒比海盗。Map (item => mul/item); } console.log(methodOne([1,2,3,4,5])); console.log(methodTwo([1,2,3,4,5]));

我们可以先从列表中排除nums[j](其中j != i),然后得到其余部分的乘积;下面是python解决这个难题的方法:

from functools import reduce
def products(nums):
    return [ reduce(lambda x,y: x * y, nums[:i] + nums[i+1:]) for i in range(len(nums)) ]
print(products([1, 2, 3, 4, 5]))

[out]
[120, 60, 40, 30, 24]

JavaScript中使用reduce的变体

const getProduct = arr => arr。Reduce ((acc, value) => acc * value); const arrayWithExclusion = (arr, node) => 加勒比海盗。Reduce ((acc, val, j) => (node !== j ?)[…Acc, val]: Acc), []); const getproductwitheexclusion = arr => { Let result = []; 对于(设I = 0;I < arrr .length;I += 1) { 结果。推动(getProduct (arrayWithExclusion(加勒比海盗,我))); } 返回结果; };