我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

我有一个O(n)空间和O(n²)时间复杂度的解,如下所示,

public static int[] findEachElementAsProduct1(final int[] arr) {

        int len = arr.length;

//        int[] product = new int[len];
//        Arrays.fill(product, 1);

        int[] product = IntStream.generate(() -> 1).limit(len).toArray();


        for (int i = 0; i < len; i++) {

            for (int j = 0; j < len; j++) {

                if (i == j) {
                    continue;
                }

                product[i] *= arr[j];
            }
        }

        return product;
    }

其他回答

public static void main(String[] args) {
    int[] arr = { 1, 2, 3, 4, 5 };
    int[] result = { 1, 1, 1, 1, 1 };
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < i; j++) {
            result[i] *= arr[j];

        }
        for (int k = arr.length - 1; k > i; k--) {
            result[i] *= arr[k];
        }
    }
    for (int i : result) {
        System.out.println(i);
    }
}

我想出了这个解决方案,我发现它很清楚,你觉得呢!?

技巧:

使用以下方法:

public int[] calc(int[] params) {

int[] left = new int[n-1]
in[] right = new int[n-1]

int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
    fac1 = fac1 * params[i];
    fac2 = fac2 * params[n-i];
    left[i] = fac1;
    right[i] = fac2; 
}
fac = 1;

int[] results = new int[n];
for( int i=0; i<n; i++ ) {
    results[i] = left[i] * right[i];
}

是的,我确定我错过了一些I -1而不是I,但这是解决它的方法。

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}

我习惯使用c#:

    public int[] ProductExceptSelf(int[] nums)
    {
        int[] returnArray = new int[nums.Length];
        List<int> auxList = new List<int>();
        int multTotal = 0;

        // If no zeros are contained in the array you only have to calculate it once
        if(!nums.Contains(0))
        {
            multTotal = nums.ToList().Aggregate((a, b) => a * b);

            for (int i = 0; i < nums.Length; i++)
            {
                returnArray[i] = multTotal / nums[i];
            }
        }
        else
        {
            for (int i = 0; i < nums.Length; i++)
            {
                auxList = nums.ToList();
                auxList.RemoveAt(i);
                if (!auxList.Contains(0))
                {
                    returnArray[i] = auxList.Aggregate((a, b) => a * b);
                }
                else
                {
                    returnArray[i] = 0;
                }
            }
        }            

        return returnArray;
    }
import java.util.Arrays;

public class Pratik
{
    public static void main(String[] args)
    {
        int[] array = {2, 3, 4, 5, 6};      //  OUTPUT: 360  240  180  144  120
        int[] products = new int[array.length];
        arrayProduct(array, products);
        System.out.println(Arrays.toString(products));
    }

    public static void arrayProduct(int array[], int products[])
    {
        double sum = 0, EPSILON = 1e-9;

        for(int i = 0; i < array.length; i++)
            sum += Math.log(array[i]);

        for(int i = 0; i < array.length; i++)
            products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
    }
}

输出:

[360, 240, 180, 144, 120]

时间复杂度:O(n) 空间复杂度:O(1)