我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是我尝试用Java来解决这个问题。抱歉格式不规范,但代码有很多重复,这是我能做的最好的,使它可读。

import java.util.Arrays;

public class Products {
    static int[] products(int... nums) {
        final int N = nums.length;
        int[] prods = new int[N];
        Arrays.fill(prods, 1);
        for (int
           i = 0, pi = 1    ,  j = N-1, pj = 1  ;
           (i < N)         && (j >= 0)          ;
           pi *= nums[i++]  ,  pj *= nums[j--]  )
        {
           prods[i] *= pi   ;  prods[j] *= pj   ;
        }
        return prods;
    }
    public static void main(String[] args) {
        System.out.println(
            Arrays.toString(products(1, 2, 3, 4, 5))
        ); // prints "[120, 60, 40, 30, 24]"
    }
}

循环不变量为pi = nums[0] * nums[1] *..* nums[N-2] *..num [j + 1]。左边的i部分是“前缀”逻辑,右边的j部分是“后缀”逻辑。


递归一行程序

Jasmeet给出了一个(漂亮的!)递归解;我把它变成了这样(可怕!)Java一行程序。它进行就地修改,堆栈中有O(N)个临时空间。

static int multiply(int[] nums, int p, int n) {
    return (n == nums.length) ? 1
      : nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
          + 0*(nums[n] *= p);
}

int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"

其他回答

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}

这是ptyhon版本

  # This solution use O(n) time and O(n) space
  def productExceptSelf(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    l_prods, r_prods = [1]*N, [1]*N

    for i in range(1, N):
      l_prods[i] = l_prods[i-1] * nums[i-1]

    for i in reversed(range(N-1)):
      r_prods[i] = r_prods[i+1] * nums[i+1]

    result = [x*y for x,y in zip(l_prods,r_prods)]
    return result

  # This solution use O(n) time and O(1) space
  def productExceptSelfSpaceOptimized(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    result = [1]*N

    for i in range(1, N):
      result[i] = result[i-1] * nums[i-1]

    r_prod = 1
    for i in reversed(range(N)):
      result[i] *= r_prod
      r_prod *= nums[i]

    return result

我用Javascript想出了两个解决方案,一个有除法,一个没有

//不除法 函数methodOne(arr) { 加勒比海盗。Map (item => { 加勒比海盗。Reduce ((result, num) => { If (num !== item) { 结果=结果* num; } 返回结果; }, 1) }); } //使用除法 函数methodTwo(arr) { Var mul = arr。Reduce ((result, num) => { 结果=结果* num; 返回结果; }, 1) 加勒比海盗。Map (item => mul/item); } console.log(methodOne([1,2,3,4,5])); console.log(methodTwo([1,2,3,4,5]));

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)
public static void main(String[] args) {
    int[] arr = { 1, 2, 3, 4, 5 };
    int[] result = { 1, 1, 1, 1, 1 };
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < i; j++) {
            result[i] *= arr[j];

        }
        for (int k = arr.length - 1; k > i; k--) {
            result[i] *= arr[k];
        }
    }
    for (int i : result) {
        System.out.println(i);
    }
}

我想出了这个解决方案,我发现它很清楚,你觉得呢!?