我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。
给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。
输入:[1,2,3,4,5]
输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)]
= [120, 60, 40, 30, 24]
你必须在O(N)中不使用除法来做这个。
多基因润滑剂方法的一个解释是:
诀窍是构造数组(在4个元素的情况下):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
这两种方法都可以在O(n)中分别从左右边开始。
然后,将两个数组逐个元素相乘,得到所需的结果。
我的代码看起来是这样的:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}
import java.util.Arrays;
public class Pratik
{
public static void main(String[] args)
{
int[] array = {2, 3, 4, 5, 6}; // OUTPUT: 360 240 180 144 120
int[] products = new int[array.length];
arrayProduct(array, products);
System.out.println(Arrays.toString(products));
}
public static void arrayProduct(int array[], int products[])
{
double sum = 0, EPSILON = 1e-9;
for(int i = 0; i < array.length; i++)
sum += Math.log(array[i]);
for(int i = 0; i < array.length; i++)
products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
}
}
输出:
[360, 240, 180, 144, 120]
时间复杂度:O(n)
空间复杂度:O(1)
还有一个O(N^(3/2))非最优解。不过,这很有趣。
首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。
例子:
4, 6, 7, 2, 3, 1, 9, 5, 8
部分结果:
4*6*7 = 168
2*3*1 = 6
9*5*8 = 360
要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。