我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

    int[] arr1 = { 1, 2, 3, 4, 5 };
    int[] product = new int[arr1.Length];              

    for (int i = 0; i < arr1.Length; i++)
    {
        for (int j = 0; j < product.Length; j++)
        {
            if (i != j)
            {
                product[j] = product[j] == 0 ? arr1[i] : product[j] * arr1[i];
            }
        }
    }

其他回答

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs
{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

//这是Java中的递归解决方案 //从main product(a,1,0)调用如下;

public static double product(double[] a, double fwdprod, int index){
    double revprod = 1;
    if (index < a.length){
        revprod = product2(a, fwdprod*a[index], index+1);
        double cur = a[index];
        a[index] = fwdprod * revprod;
        revprod *= cur;
    }
    return revprod;
}

下面是一个使用c#的函数式示例:

            Func<long>[] backwards = new Func<long>[input.Length];
            Func<long>[] forwards = new Func<long>[input.Length];

            for (int i = 0; i < input.Length; ++i)
            {
                var localIndex = i;
                backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
                forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
            }

            var output = new long[input.Length];
            for (int i = 0; i < input.Length; ++i)
            {
                if (0 == i)
                {
                    output[i] = forwards[i + 1]();
                }
                else if (input.Length - 1 == i)
                {
                    output[i] = backwards[i - 1]();
                }
                else
                {
                    output[i] = forwards[i + 1]() * backwards[i - 1]();
                }
            }

我不完全确定这是O(n),因为所创建的Funcs是半递归的,但我的测试似乎表明它在时间上是O(n)。

根据Billz的回答——抱歉我不能评论,但这里是一个正确处理列表中重复项的scala版本,可能是O(n):

val list1 = List(1, 7, 3, 3, 4, 4)
val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)}
view.force

返回:

List(1008, 144, 336, 336, 252, 252)