我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

技巧:

使用以下方法:

public int[] calc(int[] params) {

int[] left = new int[n-1]
in[] right = new int[n-1]

int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
    fac1 = fac1 * params[i];
    fac2 = fac2 * params[n-i];
    left[i] = fac1;
    right[i] = fac2; 
}
fac = 1;

int[] results = new int[n];
for( int i=0; i<n; i++ ) {
    results[i] = left[i] * right[i];
}

是的,我确定我错过了一些I -1而不是I,但这是解决它的方法。

其他回答

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}

这里是Scala中的完整代码:

val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))

这将打印出以下内容:

120
60
40
30
24

程序将过滤掉当前的elem (_ != elem);并使用reducleft方法将新列表相乘。我认为这将是O(n)如果你使用scala视图或迭代器进行惰性计算。

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

上下两次。在O(N)完成的工作

private static int[] multiply(int[] numbers) {
        int[] multiplied = new int[numbers.length];
        int total = 1;

        multiplied[0] = 1;
        for (int i = 1; i < numbers.length; i++) {
            multiplied[i] = numbers[i - 1] * multiplied[i - 1];
        }

        for (int j = numbers.length - 2; j >= 0; j--) {
            total *= numbers[j + 1];
            multiplied[j] = total * multiplied[j];
        }

        return multiplied;
    }

下面是Ruby中的一行程序解决方案。

全国矿工工会。映射{|n| (num - [n]).inject(:*)}