我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是我使用python的简洁解决方案。

from functools import reduce

def excludeProductList(nums_):
    after = [reduce(lambda x, y: x*y, nums_[i:]) for i in range(1, len(nums_))] + [1]
    before = [1] + [reduce(lambda x, y: x*y, nums_[:i]) for i in range(1, len(nums_))]
    zippedList =  list(zip(before, after))
    finalList = list(map(lambda x: x[0]*x[1], zippedList))
    return finalList

其他回答

我有一个O(n)空间和O(n²)时间复杂度的解,如下所示,

public static int[] findEachElementAsProduct1(final int[] arr) {

        int len = arr.length;

//        int[] product = new int[len];
//        Arrays.fill(product, 1);

        int[] product = IntStream.generate(() -> 1).limit(len).toArray();


        for (int i = 0; i < len; i++) {

            for (int j = 0; j < len; j++) {

                if (i == j) {
                    continue;
                }

                product[i] *= arr[j];
            }
        }

        return product;
    }

我们正在分解数组的元素,首先从下标之前开始,即前缀,然后是下标或后缀之后

class Solution:

   def productExceptSelf(nums):

      length = len(nums)


      result = [1] * length


      prefix_product = 1


      postfix_product = 1

# we initialize the result and products


      for i in range(length)

      result[i] *= prefix_product


       prefix_product *= nums[i]

#we multiply the result by each number before the index

      for i in range(length-1,-1,-1)

      result[i] *= postfix_product


      postfix_product *= nums[i]

#same for after index
   return result

抱歉,走路时用手机

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}

这里是Scala中的完整代码:

val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))

这将打印出以下内容:

120
60
40
30
24

程序将过滤掉当前的elem (_ != elem);并使用reducleft方法将新列表相乘。我认为这将是O(n)如果你使用scala视图或迭代器进行惰性计算。

这是ptyhon版本

  # This solution use O(n) time and O(n) space
  def productExceptSelf(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    l_prods, r_prods = [1]*N, [1]*N

    for i in range(1, N):
      l_prods[i] = l_prods[i-1] * nums[i-1]

    for i in reversed(range(N-1)):
      r_prods[i] = r_prods[i+1] * nums[i+1]

    result = [x*y for x,y in zip(l_prods,r_prods)]
    return result

  # This solution use O(n) time and O(1) space
  def productExceptSelfSpaceOptimized(self, nums):
    """
    :type nums: List[int]
    :rtype: List[int]
    """
    N = len(nums)
    if N == 0: return

    # Initialzie list of 1, size N
    result = [1]*N

    for i in range(1, N):
      result[i] = result[i-1] * nums[i-1]

    r_prod = 1
    for i in reversed(range(N)):
      result[i] *= r_prod
      r_prod *= nums[i]

    return result