我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这是rossfabricant答案的C实现。注意,由于我始终使用32位整数,f(f(2147483647))==2147483648,而不是-2147483647。

int32_t f( int32_t n )
{
    if( n == 0 ) return 0;
    switch( n & 0x80000001 ) {
        case 0x00000000:
            return -1 * ( n - 1 );
        case 0x00000001:
            return n + 1;
        case 0x80000000:
            return -1 * ( n + 1 );
        default:
            return n - 1;
    }
}

如果您将问题定义为允许f()接受并返回int64_t,则会涉及2147483647。当然,switch语句中使用的文字必须更改。

其他回答

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

简单的Python解决方案之所以成为可能,是因为对f(x)应该输出的内容没有限制,只有f(f(x)):

def f(x):
    return (isinstance(x, tuple) and -x[0]) or (x,)

你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:

f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
    | otherwise = complementBit x 30

在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:

def f(x):
   if isinstance(x,int):
      return (lambda: -x)
   else:
      return x()

有些类似,但我只是想写下我的第一个想法(用C++)

#include <vector>

vector<int>* f(int n)
{
  returnVector = new vector<int>();
  returnVector->push_back(n);
  return returnVector;
}

int f(vector<int>* n) { return -(n->at(0)); }

仅使用重载使f(f(n))实际调用两个不同的函数

C++解决方案;

long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}

int n = 777;
assert(f(f(n)) == -n);