我知道大o符号,但我不知道如何计算它的许多函数。特别是,我一直在试图弄清楚朴素版斐波那契数列的计算复杂度:
int Fibonacci(int n)
{
if (n <= 1)
return n;
else
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
斐波那契数列的计算复杂度是多少?它是如何计算的?
我知道大o符号,但我不知道如何计算它的许多函数。特别是,我一直在试图弄清楚朴素版斐波那契数列的计算复杂度:
int Fibonacci(int n)
{
if (n <= 1)
return n;
else
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
斐波那契数列的计算复杂度是多少?它是如何计算的?
当前回答
通过绘制函数调用图来计算很简单。简单地为n的每个值添加函数调用,看看这个数字是如何增长的。
大O是O(Z^n), Z是黄金比例,约为1.62。
当我们增加n时,列奥纳多数和斐波那契数都接近这个比率。
与其他大O问题不同,输入中没有可变性,算法和算法的实现都是明确定义的。
不需要一堆复杂的数学。简单地画出下面的函数调用,并将函数与数字匹配。
如果你熟悉黄金比例你就能认出来。
这个答案比公认的f(n) = 2^n的答案更正确。永远不会。它会趋于f(n) = golden_ratio^n。
2 (2 -> 1, 0)
4 (3 -> 2, 1) (2 -> 1, 0)
8 (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
14 (5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
22 (6 -> 5, 4)
(5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
(4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
其他回答
只要问问自己,F(n)需要执行多少条语句才能完成。
对于F(1),答案是1(条件的第一部分)。
对于F(n)答案是F(n-1) + F(n-2)
那么什么函数满足这些规则呢?试试an (a > 1):
==地理==根据美国人口普查,该镇总面积为,其中土地和(1.1%)水。
再除以a(n-2)
A2 == a + 1
解出a,你得到(1+根号(5))/2 = 1.6180339887,也就是黄金比例。
所以需要指数级的时间。
证明答案很好,但我总是不得不手工做一些迭代来真正说服自己。所以我在白板上画了一个小的调用树,并开始计算节点。我将计数分为总节点、叶节点和内部节点。以下是我得到的答案:
IN | OUT | TOT | LEAF | INT
1 | 1 | 1 | 1 | 0
2 | 1 | 1 | 1 | 0
3 | 2 | 3 | 2 | 1
4 | 3 | 5 | 3 | 2
5 | 5 | 9 | 5 | 4
6 | 8 | 15 | 8 | 7
7 | 13 | 25 | 13 | 12
8 | 21 | 41 | 21 | 20
9 | 34 | 67 | 34 | 33
10 | 55 | 109 | 55 | 54
显而易见的是,叶节点的数量是fib(n)经过几次迭代才发现,内部节点的数量是fib(n) - 1。因此节点总数为2 * fib(n) - 1。
由于在对计算复杂度进行分类时去掉了系数,最终答案是θ(fib(n))。
通过绘制函数调用图来计算很简单。简单地为n的每个值添加函数调用,看看这个数字是如何增长的。
大O是O(Z^n), Z是黄金比例,约为1.62。
当我们增加n时,列奥纳多数和斐波那契数都接近这个比率。
与其他大O问题不同,输入中没有可变性,算法和算法的实现都是明确定义的。
不需要一堆复杂的数学。简单地画出下面的函数调用,并将函数与数字匹配。
如果你熟悉黄金比例你就能认出来。
这个答案比公认的f(n) = 2^n的答案更正确。永远不会。它会趋于f(n) = golden_ratio^n。
2 (2 -> 1, 0)
4 (3 -> 2, 1) (2 -> 1, 0)
8 (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
14 (5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
22 (6 -> 5, 4)
(5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
(4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
通过绘制递归树可以更好地估计递归算法的时间复杂度,在这种情况下,绘制递归树的递归关系为T(n-1) =T(n- 2)+O(1) 注意,每一步花费O(1)意味着常数时间,因为它只做了一次比较来检查if块中的n值。递归树是这样的
n
(n-1) (n-2)
(n-2)(n-3) (n-3)(n-4) ...so on
这里假设上面树的每一层都用i表示 因此,
i
0 n
1 (n-1) (n-2)
2 (n-2) (n-3) (n-3) (n-4)
3 (n-3)(n-4) (n-4)(n-5) (n-4)(n-5) (n-5)(n-6)
假设在特定的i值处,树就结束了,也就是当n-i=1时,因此i=n-1,也就是说树的高度是n-1。 现在让我们看看树中n层中的每一层做了多少工作。注意,按照递归关系,每一步花费O(1)时间。
2^0=1 n
2^1=2 (n-1) (n-2)
2^2=4 (n-2) (n-3) (n-3) (n-4)
2^3=8 (n-3)(n-4) (n-4)(n-5) (n-4)(n-5) (n-5)(n-6) ..so on
2^i for ith level
因为i=n-1是树的高度,所以每一层所做的功为
i work
1 2^1
2 2^2
3 2^3..so on
因此,所做的总功将是每一层所做的功的总和,因此它将是2^0+2^1+2^2+2^3…+2^(n-1),因为i=n-1。 通过几何级数,这个和是2^n,因此总时间复杂度是O(2^n)
你可以展开它,有一个可视化
T(n) = T(n-1) + T(n-2) <
T(n-1) + T(n-1)
= 2*T(n-1)
= 2*2*T(n-2)
= 2*2*2*T(n-3)
....
= 2^i*T(n-i)
...
==> O(2^n)