I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

如果N足够大,你会得到一些相似的颜色。世界上只有这么多。

为什么不把它们均匀地分布在光谱中,像这样:

IEnumerable<Color> CreateUniqueColors(int nColors)
{
    int subdivision = (int)Math.Floor(Math.Pow(nColors, 1/3d));
    for(int r = 0; r < 255; r += subdivision)
        for(int g = 0; g < 255; g += subdivision)
            for(int b = 0; b < 255; b += subdivision)
                yield return Color.FromArgb(r, g, b);
}

如果您想混合序列,以便相似的颜色不在彼此旁边,您可能会打乱结果列表。

是我想得不够周全吗?


您可以使用HSL颜色模型来创建颜色。

如果你想要的只是不同的色调(可能),以及亮度或饱和度的轻微变化,你可以像这样分配色调:

// assumes hue [0, 360), saturation [0, 100), lightness [0, 100)

for(i = 0; i < 360; i += 360 / num_colors) {
    HSLColor c;
    c.hue = i;
    c.saturation = 90 + randf() * 10;
    c.lightness = 50 + randf() * 10;

    addColor(c);
}

我有个主意。想象一个HSV气缸

定义亮度和饱和度的上限和下限。这在空间内定义了一个正方形的横截面环。

现在,在这个空间中随机散布N个点。

然后对它们应用迭代排斥算法,要么迭代次数固定,要么直到这些点稳定下来。

现在你应该有N个点,代表N种颜色,它们在你感兴趣的颜色空间中尽可能不同。

Hugo


这里有一个解决你的“独特”问题的解决方案,这完全是夸大的:

创建一个单位球体,并在其上放置带有排斥电荷的点。运行一个粒子系统,直到它们不再移动(或者delta“足够小”)。在这一点上,每个点之间的距离都尽可能远。将(x, y, z)转换为rgb。

我提到它是因为对于某些类型的问题,这种类型的解决方案比暴力解决方案更好。

我一开始看到这种方法是用来镶嵌球面的。

同样,遍历HSL空间或RGB空间的最明显的解决方案可能工作得很好。


这个问题出现在相当多的SO讨论中:

生成独特颜色的算法 生成独特的颜色 在图形中生成明显不同的RGB颜色 如何为任意自然数n生成n种不同的颜色?

提出了不同的解决方案,但没有一个是最优的。幸运的是,科学来拯救我们

任意N

彩色显示分类图像(免费下载) 一个个性化地图着色的网络服务(免费下载,一个网络服务解决方案应该在下个月可用) 选择高对比度颜色集的算法(作者提供了一个免费的c++实现) 高对比度的颜色集(问题的第一个算法)

最后两本将通过大多数大学图书馆/代理免费提供。

N是有限且相对较小的

在这种情况下,可以使用列表解决方案。关于这个主题,有一篇非常有趣的文章是免费的:

《彩色字母表和彩色编码的局限性》

有几个颜色列表可以考虑:

Boynton列出了11种几乎不会被混淆的颜色(可在前一节的第一篇论文中找到) Kelly的22种最大对比度的颜色(可以在上面的论文中找到)

我还遇到了一个麻省理工学院学生的这个调色板。 最后,下面的链接在不同颜色系统/坐标之间的转换可能是有用的(例如,文章中的一些颜色没有在RGB中指定):

http://chem8.org/uch/space-55036-do-blog-id-5333.html https://metacpan.org/pod/Color::Library::Dictionary::NBS_ISCC 色彩理论:如何将孟塞尔HVC转换为RGB/HSB/HSL

对于Kelly和Boynton的列表,我已经将其转换为RGB(除了白色和黑色,这应该很明显)。一些c#代码:

public static ReadOnlyCollection<Color> KellysMaxContrastSet
{
    get { return _kellysMaxContrastSet.AsReadOnly(); }
}

private static readonly List<Color> _kellysMaxContrastSet = new List<Color>
{
    UIntToColor(0xFFFFB300), //Vivid Yellow
    UIntToColor(0xFF803E75), //Strong Purple
    UIntToColor(0xFFFF6800), //Vivid Orange
    UIntToColor(0xFFA6BDD7), //Very Light Blue
    UIntToColor(0xFFC10020), //Vivid Red
    UIntToColor(0xFFCEA262), //Grayish Yellow
    UIntToColor(0xFF817066), //Medium Gray

    //The following will not be good for people with defective color vision
    UIntToColor(0xFF007D34), //Vivid Green
    UIntToColor(0xFFF6768E), //Strong Purplish Pink
    UIntToColor(0xFF00538A), //Strong Blue
    UIntToColor(0xFFFF7A5C), //Strong Yellowish Pink
    UIntToColor(0xFF53377A), //Strong Violet
    UIntToColor(0xFFFF8E00), //Vivid Orange Yellow
    UIntToColor(0xFFB32851), //Strong Purplish Red
    UIntToColor(0xFFF4C800), //Vivid Greenish Yellow
    UIntToColor(0xFF7F180D), //Strong Reddish Brown
    UIntToColor(0xFF93AA00), //Vivid Yellowish Green
    UIntToColor(0xFF593315), //Deep Yellowish Brown
    UIntToColor(0xFFF13A13), //Vivid Reddish Orange
    UIntToColor(0xFF232C16), //Dark Olive Green
};

public static ReadOnlyCollection<Color> BoyntonOptimized
{
    get { return _boyntonOptimized.AsReadOnly(); }
}

private static readonly List<Color> _boyntonOptimized = new List<Color>
{
    Color.FromArgb(0, 0, 255),      //Blue
    Color.FromArgb(255, 0, 0),      //Red
    Color.FromArgb(0, 255, 0),      //Green
    Color.FromArgb(255, 255, 0),    //Yellow
    Color.FromArgb(255, 0, 255),    //Magenta
    Color.FromArgb(255, 128, 128),  //Pink
    Color.FromArgb(128, 128, 128),  //Gray
    Color.FromArgb(128, 0, 0),      //Brown
    Color.FromArgb(255, 128, 0),    //Orange
};

static public Color UIntToColor(uint color)
{
    var a = (byte)(color >> 24);
    var r = (byte)(color >> 16);
    var g = (byte)(color >> 8);
    var b = (byte)(color >> 0);
    return Color.FromArgb(a, r, g, b);
}

下面是十六进制和每通道8位的RGB值:

kelly_colors_hex = [
    0xFFB300, # Vivid Yellow
    0x803E75, # Strong Purple
    0xFF6800, # Vivid Orange
    0xA6BDD7, # Very Light Blue
    0xC10020, # Vivid Red
    0xCEA262, # Grayish Yellow
    0x817066, # Medium Gray

    # The following don't work well for people with defective color vision
    0x007D34, # Vivid Green
    0xF6768E, # Strong Purplish Pink
    0x00538A, # Strong Blue
    0xFF7A5C, # Strong Yellowish Pink
    0x53377A, # Strong Violet
    0xFF8E00, # Vivid Orange Yellow
    0xB32851, # Strong Purplish Red
    0xF4C800, # Vivid Greenish Yellow
    0x7F180D, # Strong Reddish Brown
    0x93AA00, # Vivid Yellowish Green
    0x593315, # Deep Yellowish Brown
    0xF13A13, # Vivid Reddish Orange
    0x232C16, # Dark Olive Green
    ]

kelly_colors = dict(vivid_yellow=(255, 179, 0),
                    strong_purple=(128, 62, 117),
                    vivid_orange=(255, 104, 0),
                    very_light_blue=(166, 189, 215),
                    vivid_red=(193, 0, 32),
                    grayish_yellow=(206, 162, 98),
                    medium_gray=(129, 112, 102),

                    # these aren't good for people with defective color vision:
                    vivid_green=(0, 125, 52),
                    strong_purplish_pink=(246, 118, 142),
                    strong_blue=(0, 83, 138),
                    strong_yellowish_pink=(255, 122, 92),
                    strong_violet=(83, 55, 122),
                    vivid_orange_yellow=(255, 142, 0),
                    strong_purplish_red=(179, 40, 81),
                    vivid_greenish_yellow=(244, 200, 0),
                    strong_reddish_brown=(127, 24, 13),
                    vivid_yellowish_green=(147, 170, 0),
                    deep_yellowish_brown=(89, 51, 21),
                    vivid_reddish_orange=(241, 58, 19),
                    dark_olive_green=(35, 44, 22))

对于所有Java开发人员,以下是JavaFX的颜色:

// Don't forget to import javafx.scene.paint.Color;

private static final Color[] KELLY_COLORS = {
    Color.web("0xFFB300"),    // Vivid Yellow
    Color.web("0x803E75"),    // Strong Purple
    Color.web("0xFF6800"),    // Vivid Orange
    Color.web("0xA6BDD7"),    // Very Light Blue
    Color.web("0xC10020"),    // Vivid Red
    Color.web("0xCEA262"),    // Grayish Yellow
    Color.web("0x817066"),    // Medium Gray

    Color.web("0x007D34"),    // Vivid Green
    Color.web("0xF6768E"),    // Strong Purplish Pink
    Color.web("0x00538A"),    // Strong Blue
    Color.web("0xFF7A5C"),    // Strong Yellowish Pink
    Color.web("0x53377A"),    // Strong Violet
    Color.web("0xFF8E00"),    // Vivid Orange Yellow
    Color.web("0xB32851"),    // Strong Purplish Red
    Color.web("0xF4C800"),    // Vivid Greenish Yellow
    Color.web("0x7F180D"),    // Strong Reddish Brown
    Color.web("0x93AA00"),    // Vivid Yellowish Green
    Color.web("0x593315"),    // Deep Yellowish Brown
    Color.web("0xF13A13"),    // Vivid Reddish Orange
    Color.web("0x232C16"),    // Dark Olive Green
};

以下是根据上面的顺序未排序的凯利颜色。

以下是按色调排序的方凯利颜色(注意一些黄色的对比不是很明显)


我会尽量把饱和度和亮度调到最大,只关注色调。在我看来,H可以从0到255,然后绕圈。现在如果你想要两种对比色,你可以取这个环的对边,即0和128。如果你想要4种颜色,你需要取一些以圆周长度256的1/4为间隔的颜色,即0,64,128,192。当然,正如其他人建议的那样,当你需要N种颜色时,你可以用256/N将它们分开。

我想补充的是,用二进制数的反向表示来形成这个序列。看看这个:

0 = 00000000  after reversal is 00000000 = 0
1 = 00000001  after reversal is 10000000 = 128
2 = 00000010  after reversal is 01000000 = 64
3 = 00000011  after reversal is 11000000 = 192

... 这样,如果你需要N种不同的颜色,你只需要取前N个数字,把它们倒过来,你就能得到尽可能多的距离点(因为N是2的幂),同时保持序列的每个前缀都有很大不同。

在我的用例中,这是一个重要的目标,因为我有一个图表,其中颜色是根据这种颜色所覆盖的区域进行排序的。我希望图表中最大的区域具有较大的对比度,并且我对一些小区域使用与前十名相似的颜色也没有问题,因为读者通过观察区域就可以很明显地看出哪个是哪个。


为了子孙后代,我在这里添加了Python中公认的答案。

import numpy as np
import colorsys

def _get_colors(num_colors):
    colors=[]
    for i in np.arange(0., 360., 360. / num_colors):
        hue = i/360.
        lightness = (50 + np.random.rand() * 10)/100.
        saturation = (90 + np.random.rand() * 10)/100.
        colors.append(colorsys.hls_to_rgb(hue, lightness, saturation))
    return colors

就像Uri Cohen的答案,但它是一个生成器。首先要把颜色分开。确定的。

样品,左边颜色先:

#!/usr/bin/env python3
from typing import Iterable, Tuple
import colorsys
import itertools
from fractions import Fraction
from pprint import pprint

def zenos_dichotomy() -> Iterable[Fraction]:
    """
    http://en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%C2%B7_%C2%B7_%C2%B7
    """
    for k in itertools.count():
        yield Fraction(1,2**k)

def fracs() -> Iterable[Fraction]:
    """
    [Fraction(0, 1), Fraction(1, 2), Fraction(1, 4), Fraction(3, 4), Fraction(1, 8), Fraction(3, 8), Fraction(5, 8), Fraction(7, 8), Fraction(1, 16), Fraction(3, 16), ...]
    [0.0, 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, 0.0625, 0.1875, ...]
    """
    yield Fraction(0)
    for k in zenos_dichotomy():
        i = k.denominator # [1,2,4,8,16,...]
        for j in range(1,i,2):
            yield Fraction(j,i)

# can be used for the v in hsv to map linear values 0..1 to something that looks equidistant
# bias = lambda x: (math.sqrt(x/3)/Fraction(2,3)+Fraction(1,3))/Fraction(6,5)

HSVTuple = Tuple[Fraction, Fraction, Fraction]
RGBTuple = Tuple[float, float, float]

def hue_to_tones(h: Fraction) -> Iterable[HSVTuple]:
    for s in [Fraction(6,10)]: # optionally use range
        for v in [Fraction(8,10),Fraction(5,10)]: # could use range too
            yield (h, s, v) # use bias for v here if you use range

def hsv_to_rgb(x: HSVTuple) -> RGBTuple:
    return colorsys.hsv_to_rgb(*map(float, x))

flatten = itertools.chain.from_iterable

def hsvs() -> Iterable[HSVTuple]:
    return flatten(map(hue_to_tones, fracs()))

def rgbs() -> Iterable[RGBTuple]:
    return map(hsv_to_rgb, hsvs())

def rgb_to_css(x: RGBTuple) -> str:
    uint8tuple = map(lambda y: int(y*255), x)
    return "rgb({},{},{})".format(*uint8tuple)

def css_colors() -> Iterable[str]:
    return map(rgb_to_css, rgbs())

if __name__ == "__main__":
    # sample 100 colors in css format
    sample_colors = list(itertools.islice(css_colors(), 100))
    pprint(sample_colors)

每个人似乎都忽略了非常有用的YUV颜色空间的存在,它被设计用来表示人类视觉系统中可感知的颜色差异。YUV中的距离代表人类感知的差异。我需要这个功能的MagicCube4D实现4维魔方和无限数量的其他4D扭曲谜题有任意数量的脸。

我的解决方案首先在YUV中选择随机点,然后迭代分解最接近的两个点,在返回结果时只转换为RGB。方法是O(n^3),但对于小数字或可以缓存的数字来说,这并不重要。它当然可以变得更有效,但结果似乎很好。

该函数允许亮度阈值的可选规范,以不产生任何成分比给定量更亮或更暗的颜色。IE,你可能不希望值接近黑色或白色。当产生的颜色将被用作基础色,然后通过光照、分层、透明度等进行阴影处理,并且必须仍然与基础色不同时,这是有用的。

import java.awt.Color;
import java.util.Random;

/**
 * Contains a method to generate N visually distinct colors and helper methods.
 * 
 * @author Melinda Green
 */
public class ColorUtils {
    private ColorUtils() {} // To disallow instantiation.
    private final static float
        U_OFF = .436f,
        V_OFF = .615f;
    private static final long RAND_SEED = 0;
    private static Random rand = new Random(RAND_SEED);    

    /*
     * Returns an array of ncolors RGB triplets such that each is as unique from the rest as possible
     * and each color has at least one component greater than minComponent and one less than maxComponent.
     * Use min == 1 and max == 0 to include the full RGB color range.
     * 
     * Warning: O N^2 algorithm blows up fast for more than 100 colors.
     */
    public static Color[] generateVisuallyDistinctColors(int ncolors, float minComponent, float maxComponent) {
        rand.setSeed(RAND_SEED); // So that we get consistent results for each combination of inputs

        float[][] yuv = new float[ncolors][3];

        // initialize array with random colors
        for(int got = 0; got < ncolors;) {
            System.arraycopy(randYUVinRGBRange(minComponent, maxComponent), 0, yuv[got++], 0, 3);
        }
        // continually break up the worst-fit color pair until we get tired of searching
        for(int c = 0; c < ncolors * 1000; c++) {
            float worst = 8888;
            int worstID = 0;
            for(int i = 1; i < yuv.length; i++) {
                for(int j = 0; j < i; j++) {
                    float dist = sqrdist(yuv[i], yuv[j]);
                    if(dist < worst) {
                        worst = dist;
                        worstID = i;
                    }
                }
            }
            float[] best = randYUVBetterThan(worst, minComponent, maxComponent, yuv);
            if(best == null)
                break;
            else
                yuv[worstID] = best;
        }

        Color[] rgbs = new Color[yuv.length];
        for(int i = 0; i < yuv.length; i++) {
            float[] rgb = new float[3];
            yuv2rgb(yuv[i][0], yuv[i][1], yuv[i][2], rgb);
            rgbs[i] = new Color(rgb[0], rgb[1], rgb[2]);
            //System.out.println(rgb[i][0] + "\t" + rgb[i][1] + "\t" + rgb[i][2]);
        }

        return rgbs;
    }

    public static void hsv2rgb(float h, float s, float v, float[] rgb) {
        // H is given on [0->6] or -1. S and V are given on [0->1]. 
        // RGB are each returned on [0->1]. 
        float m, n, f;
        int i;

        float[] hsv = new float[3];

        hsv[0] = h;
        hsv[1] = s;
        hsv[2] = v;
        System.out.println("H: " + h + " S: " + s + " V:" + v);
        if(hsv[0] == -1) {
            rgb[0] = rgb[1] = rgb[2] = hsv[2];
            return;
        }
        i = (int) (Math.floor(hsv[0]));
        f = hsv[0] - i;
        if(i % 2 == 0)
            f = 1 - f; // if i is even 
        m = hsv[2] * (1 - hsv[1]);
        n = hsv[2] * (1 - hsv[1] * f);
        switch(i) {
            case 6:
            case 0:
                rgb[0] = hsv[2];
                rgb[1] = n;
                rgb[2] = m;
                break;
            case 1:
                rgb[0] = n;
                rgb[1] = hsv[2];
                rgb[2] = m;
                break;
            case 2:
                rgb[0] = m;
                rgb[1] = hsv[2];
                rgb[2] = n;
                break;
            case 3:
                rgb[0] = m;
                rgb[1] = n;
                rgb[2] = hsv[2];
                break;
            case 4:
                rgb[0] = n;
                rgb[1] = m;
                rgb[2] = hsv[2];
                break;
            case 5:
                rgb[0] = hsv[2];
                rgb[1] = m;
                rgb[2] = n;
                break;
        }
    }


    // From http://en.wikipedia.org/wiki/YUV#Mathematical_derivations_and_formulas
    public static void yuv2rgb(float y, float u, float v, float[] rgb) {
        rgb[0] = 1 * y + 0 * u + 1.13983f * v;
        rgb[1] = 1 * y + -.39465f * u + -.58060f * v;
        rgb[2] = 1 * y + 2.03211f * u + 0 * v;
    }

    public static void rgb2yuv(float r, float g, float b, float[] yuv) {
        yuv[0] = .299f * r + .587f * g + .114f * b;
        yuv[1] = -.14713f * r + -.28886f * g + .436f * b;
        yuv[2] = .615f * r + -.51499f * g + -.10001f * b;
    }

    private static float[] randYUVinRGBRange(float minComponent, float maxComponent) {
        while(true) {
            float y = rand.nextFloat(); // * YFRAC + 1-YFRAC);
            float u = rand.nextFloat() * 2 * U_OFF - U_OFF;
            float v = rand.nextFloat() * 2 * V_OFF - V_OFF;
            float[] rgb = new float[3];
            yuv2rgb(y, u, v, rgb);
            float r = rgb[0], g = rgb[1], b = rgb[2];
            if(0 <= r && r <= 1 &&
                0 <= g && g <= 1 &&
                0 <= b && b <= 1 &&
                (r > minComponent || g > minComponent || b > minComponent) && // don't want all dark components
                (r < maxComponent || g < maxComponent || b < maxComponent)) // don't want all light components

                return new float[]{y, u, v};
        }
    }

    private static float sqrdist(float[] a, float[] b) {
        float sum = 0;
        for(int i = 0; i < a.length; i++) {
            float diff = a[i] - b[i];
            sum += diff * diff;
        }
        return sum;
    }

    private static double worstFit(Color[] colors) {
        float worst = 8888;
        float[] a = new float[3], b = new float[3];
        for(int i = 1; i < colors.length; i++) {
            colors[i].getColorComponents(a);
            for(int j = 0; j < i; j++) {
                colors[j].getColorComponents(b);
                float dist = sqrdist(a, b);
                if(dist < worst) {
                    worst = dist;
                }
            }
        }
        return Math.sqrt(worst);
    }

    private static float[] randYUVBetterThan(float bestDistSqrd, float minComponent, float maxComponent, float[][] in) {
        for(int attempt = 1; attempt < 100 * in.length; attempt++) {
            float[] candidate = randYUVinRGBRange(minComponent, maxComponent);
            boolean good = true;
            for(int i = 0; i < in.length; i++)
                if(sqrdist(candidate, in[i]) < bestDistSqrd)
                    good = false;
            if(good)
                return candidate;
        }
        return null; // after a bunch of passes, couldn't find a candidate that beat the best.
    }


    /**
     * Simple example program.
     */
    public static void main(String[] args) {
        final int ncolors = 10;
        Color[] colors = generateVisuallyDistinctColors(ncolors, .8f, .3f);
        for(int i = 0; i < colors.length; i++) {
            System.out.println(colors[i].toString());
        }
        System.out.println("Worst fit color = " + worstFit(colors));
    }

}

这在MATLAB中是微不足道的(有一个hsv命令):

cmap = hsv(number_of_colors)

我为R写了一个名为qualpalr的包,它是专门为此目的设计的。我建议你看看小插图,看看它是如何工作的,但我会尽量总结要点。

qualpalr在HSL颜色空间(前面在这个线程中描述过)中获取一个颜色规范,将其投射到DIN99d颜色空间(感知上是均匀的),并找到使它们之间的最小距离最大化的n。

# Create a palette of 4 colors of hues from 0 to 360, saturations between
# 0.1 and 0.5, and lightness from 0.6 to 0.85
pal <- qualpal(n = 4, list(h = c(0, 360), s = c(0.1, 0.5), l = c(0.6, 0.85)))

# Look at the colors in hex format
pal$hex
#> [1] "#6F75CE" "#CC6B76" "#CAC16A" "#76D0D0"

# Create a palette using one of the predefined color subspaces
pal2 <- qualpal(n = 4, colorspace = "pretty")

# Distance matrix of the DIN99d color differences
pal2$de_DIN99d
#>        #69A3CC #6ECC6E #CA6BC4
#> 6ECC6E      22                
#> CA6BC4      21      30        
#> CD976B      24      21      21

plot(pal2)


我认为这个简单的递归算法补充了公认的答案,以产生不同的色调值。我为hsv做了它,但也可以用于其他颜色空间。

它在循环中产生色调,在每个循环中尽可能彼此分离。

/**
 * 1st cycle: 0, 120, 240
 * 2nd cycle (+60): 60, 180, 300
 * 3th cycle (+30): 30, 150, 270, 90, 210, 330
 * 4th cycle (+15): 15, 135, 255, 75, 195, 315, 45, 165, 285, 105, 225, 345
 */
public static float recursiveHue(int n) {
    // if 3: alternates red, green, blue variations
    float firstCycle = 3;

    // First cycle
    if (n < firstCycle) {
        return n * 360f / firstCycle;
    }
    // Each cycle has as much values as all previous cycles summed (powers of 2)
    else {
        // floor of log base 2
        int numCycles = (int)Math.floor(Math.log(n / firstCycle) / Math.log(2));
        // divDown stores the larger power of 2 that is still lower than n
        int divDown = (int)(firstCycle * Math.pow(2, numCycles));
        // same hues than previous cycle, but summing an offset (half than previous cycle)
        return recursiveHue(n % divDown) + 180f / divDown;
    }
}

我在这里找不到这种算法。我希望这对你有所帮助,这是我在这里的第一篇文章。


HSL颜色模型可能非常适合“排序”颜色,但如果您正在寻找视觉上独特的颜色,您肯定需要Lab颜色模型。

CIELAB被设计成相对于人类色觉而言在感知上是一致的,这意味着这些数值中相同数量的数值变化对应着大约相同数量的视觉感知变化。

一旦你知道了这一点,从广泛的颜色范围中找到N种颜色的最优子集仍然是一个(NP)困难问题,有点类似于旅行推销员问题,所有使用k-mean算法或其他方法的解决方案都不会有真正的帮助。

也就是说,如果N不是太大,如果你从一个有限的颜色集开始,你会很容易找到一个非常好的不同颜色的子集,根据一个简单的随机函数的Lab距离。

我编写了这样一个工具供我自己使用(你可以在这里找到:https://mokole.com/palette.html),下面是我在N=7时得到的:

它都是javascript,所以请随意查看页面的源代码,并根据自己的需要进行调整。


这个OpenCV函数使用HSV颜色模型在0<=H<=360º周围生成n个均匀分布的颜色,最大S=1.0, V=1.0。函数在bgr_mat中输出BGR颜色:

void distributed_colors (int n, cv::Mat_<cv::Vec3f> & bgr_mat) {
  cv::Mat_<cv::Vec3f> hsv_mat(n,CV_32F,cv::Vec3f(0.0,1.0,1.0));
  double step = 360.0/n;
  double h= 0.0;
  cv::Vec3f value;
  for (int i=0;i<n;i++,h+=step) {
    value = hsv_mat.at<cv::Vec3f>(i);
    hsv_mat.at<cv::Vec3f>(i)[0] = h;
  }
  cv::cvtColor(hsv_mat, bgr_mat, CV_HSV2BGR);
  bgr_mat *= 255;
}

对于Python用户来说,seaborn非常简洁:

>>> import seaborn as sns
>>> sns.color_palette(n_colors=4)

它返回RGB元组列表:

[(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(1.0, 0.4980392156862745, 0.054901960784313725),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)]

我们只需要一个RGB三联体对的范围,这些三联体之间的距离最大。

我们可以定义一个简单的线性渐变,然后调整渐变的大小以获得所需的颜色数量。

在python中:

from skimage.transform import resize
import numpy as np
def distinguishable_colors(n, shuffle = True, 
                           sinusoidal = False,
                           oscillate_tone = False): 
    ramp = ([1, 0, 0],[1,1,0],[0,1,0],[0,0,1], [1,0,1]) if n>3 else ([1,0,0], [0,1,0],[0,0,1])
    
    coltrio = np.vstack(ramp)
    
    colmap = np.round(resize(coltrio, [n,3], preserve_range=True, 
                             order = 1 if n>3 else 3
                             , mode = 'wrap'),3)
    
    if sinusoidal: colmap = np.sin(colmap*np.pi/2)
    
    colmap = [colmap[x,] for x  in range(colmap.shape[0])]
    
    if oscillate_tone:
        oscillate = [0,1]*round(len(colmap)/2+.5)
        oscillate = [np.array([osc,osc,osc]) for osc in oscillate]
        colmap = [.8*colmap[x] + .2*oscillate[x] for x in range(len(colmap))]
    
    #Whether to shuffle the output colors
    if shuffle:
        random.seed(1)
        random.shuffle(colmap)
        
    return colmap


Janus的回答,但更容易读懂。我还稍微调整了配色方案,并在你可以自己修改的地方做了标记

我已经把这个片段直接粘贴到一个jupyter笔记本。

import colorsys
import itertools
from fractions import Fraction
from IPython.display import HTML as html_print

def infinite_hues():
    yield Fraction(0)
    for k in itertools.count():
        i = 2**k # zenos_dichotomy
        for j in range(1,i,2):
            yield Fraction(j,i)

def hue_to_hsvs(h: Fraction):
    # tweak values to adjust scheme
    for s in [Fraction(6,10)]:
        for v in [Fraction(6,10), Fraction(9,10)]: 
            yield (h, s, v) 

def rgb_to_css(rgb) -> str:
    uint8tuple = map(lambda y: int(y*255), rgb)
    return "rgb({},{},{})".format(*uint8tuple)

def css_to_html(css):
    return f"<text style=background-color:{css}>&nbsp;&nbsp;&nbsp;&nbsp;</text>"

def show_colors(n=33):
    hues = infinite_hues()
    hsvs = itertools.chain.from_iterable(hue_to_hsvs(hue) for hue in hues)
    rgbs = (colorsys.hsv_to_rgb(*hsv) for hsv in hsvs)
    csss = (rgb_to_css(rgb) for rgb in rgbs)
    htmls = (css_to_html(css) for css in csss)

    myhtmls = itertools.islice(htmls, n)
    display(html_print("".join(myhtmls)))

show_colors()


上面有很多非常好的答案,但如果有人正在寻找一个快速的python解决方案,那么提到python包distinctify可能会很有用。它是pypi提供的一个轻量级包,使用起来非常简单:

from distinctipy import distinctipy

colors = distinctipy.get_colors(12)

print(colors)

# display the colours
distinctipy.color_swatch(colors)

它返回一个rgb元组列表

[(0, 1, 0), (1, 0, 1), (0, 0.5, 1), (1, 0.5, 0), (0.5, 0.75, 0.5), (0.4552518132842178, 0.12660764790179446, 0.5467915225460569), (1, 0, 0), (0.12076092516775849, 0.9942188027771208, 0.9239958090462229), (0.254747094970068, 0.4768020779917903, 0.02444859177890535), (0.7854526395841417, 0.48630704929211144, 0.9902480906347156), (0, 0, 1), (1, 1, 0)]

此外,它还有一些额外的功能,比如生成不同于现有颜色列表的颜色。


这产生了与Janus Troelsen的溶液相同的颜色。但是它使用的不是生成器,而是开始/停止语义。它也是完全向量化的。

import numpy as np
import numpy.typing as npt
import matplotlib.colors

def distinct_colors(start: int=0, stop: int=20) -> npt.NDArray[np.float64]:
    """Returns an array of distinct RGB colors, from an infinite sequence of colors
    """
    if stop <= start: # empty interval; return empty array
        return np.array([], dtype=np.float64)
    sat_values = [6/10]         # other tones could be added
    val_values = [8/10, 5/10]   # other tones could be added
    colors_per_hue_value = len(sat_values) * len(val_values)
    # Get the start and stop indices within the hue value stream that are needed
    # to achieve the requested range
    hstart = start // colors_per_hue_value
    hstop = (stop+colors_per_hue_value-1) // colors_per_hue_value
    # Zero will cause a singularity in the caluculation, so we will add the zero
    # afterwards
    prepend_zero = hstart==0 

    # Sequence (if hstart=1): 1,2,...,hstop-1
    i = np.arange(1 if prepend_zero else hstart, hstop) 
    # The following yields (if hstart is 1): 1/2,  1/4, 3/4,  1/8, 3/8, 5/8, 7/8,  
    # 1/16, 3/16, ... 
    hue_values = (2*i+1) / np.power(2,np.floor(np.log2(i*2))) - 1
    
    if prepend_zero:
        hue_values = np.concatenate(([0], hue_values))

    # Make all combinations of h, s and v values, as if done by a nested loop
    # in that order
    hsv = np.array(np.meshgrid(hue_values, sat_values, val_values, indexing='ij')
                    ).reshape((3,-1)).transpose()

    # Select the requested range (only the necessary values were computed but we
    # need to adjust the indices since start & stop are not necessarily multiples
    # of colors_per_hue_value)
    hsv = hsv[start % colors_per_hue_value : 
                start % colors_per_hue_value + stop - start]
    # Use the matplotlib vectorized function to convert hsv to rgb
    return matplotlib.colors.hsv_to_rgb(hsv)

样品:

from matplotlib.colors import ListedColormap
ListedColormap(distinct_colors(stop=20))

ListedColormap(distinct_colors(start=30, stop=50))