I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

当前回答

这个OpenCV函数使用HSV颜色模型在0<=H<=360º周围生成n个均匀分布的颜色,最大S=1.0, V=1.0。函数在bgr_mat中输出BGR颜色:

void distributed_colors (int n, cv::Mat_<cv::Vec3f> & bgr_mat) {
  cv::Mat_<cv::Vec3f> hsv_mat(n,CV_32F,cv::Vec3f(0.0,1.0,1.0));
  double step = 360.0/n;
  double h= 0.0;
  cv::Vec3f value;
  for (int i=0;i<n;i++,h+=step) {
    value = hsv_mat.at<cv::Vec3f>(i);
    hsv_mat.at<cv::Vec3f>(i)[0] = h;
  }
  cv::cvtColor(hsv_mat, bgr_mat, CV_HSV2BGR);
  bgr_mat *= 255;
}

其他回答

就像Uri Cohen的答案,但它是一个生成器。首先要把颜色分开。确定的。

样品,左边颜色先:

#!/usr/bin/env python3
from typing import Iterable, Tuple
import colorsys
import itertools
from fractions import Fraction
from pprint import pprint

def zenos_dichotomy() -> Iterable[Fraction]:
    """
    http://en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%C2%B7_%C2%B7_%C2%B7
    """
    for k in itertools.count():
        yield Fraction(1,2**k)

def fracs() -> Iterable[Fraction]:
    """
    [Fraction(0, 1), Fraction(1, 2), Fraction(1, 4), Fraction(3, 4), Fraction(1, 8), Fraction(3, 8), Fraction(5, 8), Fraction(7, 8), Fraction(1, 16), Fraction(3, 16), ...]
    [0.0, 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, 0.0625, 0.1875, ...]
    """
    yield Fraction(0)
    for k in zenos_dichotomy():
        i = k.denominator # [1,2,4,8,16,...]
        for j in range(1,i,2):
            yield Fraction(j,i)

# can be used for the v in hsv to map linear values 0..1 to something that looks equidistant
# bias = lambda x: (math.sqrt(x/3)/Fraction(2,3)+Fraction(1,3))/Fraction(6,5)

HSVTuple = Tuple[Fraction, Fraction, Fraction]
RGBTuple = Tuple[float, float, float]

def hue_to_tones(h: Fraction) -> Iterable[HSVTuple]:
    for s in [Fraction(6,10)]: # optionally use range
        for v in [Fraction(8,10),Fraction(5,10)]: # could use range too
            yield (h, s, v) # use bias for v here if you use range

def hsv_to_rgb(x: HSVTuple) -> RGBTuple:
    return colorsys.hsv_to_rgb(*map(float, x))

flatten = itertools.chain.from_iterable

def hsvs() -> Iterable[HSVTuple]:
    return flatten(map(hue_to_tones, fracs()))

def rgbs() -> Iterable[RGBTuple]:
    return map(hsv_to_rgb, hsvs())

def rgb_to_css(x: RGBTuple) -> str:
    uint8tuple = map(lambda y: int(y*255), x)
    return "rgb({},{},{})".format(*uint8tuple)

def css_colors() -> Iterable[str]:
    return map(rgb_to_css, rgbs())

if __name__ == "__main__":
    # sample 100 colors in css format
    sample_colors = list(itertools.islice(css_colors(), 100))
    pprint(sample_colors)

这里有一个解决你的“独特”问题的解决方案,这完全是夸大的:

创建一个单位球体,并在其上放置带有排斥电荷的点。运行一个粒子系统,直到它们不再移动(或者delta“足够小”)。在这一点上,每个点之间的距离都尽可能远。将(x, y, z)转换为rgb。

我提到它是因为对于某些类型的问题,这种类型的解决方案比暴力解决方案更好。

我一开始看到这种方法是用来镶嵌球面的。

同样,遍历HSL空间或RGB空间的最明显的解决方案可能工作得很好。

我会尽量把饱和度和亮度调到最大,只关注色调。在我看来,H可以从0到255,然后绕圈。现在如果你想要两种对比色,你可以取这个环的对边,即0和128。如果你想要4种颜色,你需要取一些以圆周长度256的1/4为间隔的颜色,即0,64,128,192。当然,正如其他人建议的那样,当你需要N种颜色时,你可以用256/N将它们分开。

我想补充的是,用二进制数的反向表示来形成这个序列。看看这个:

0 = 00000000  after reversal is 00000000 = 0
1 = 00000001  after reversal is 10000000 = 128
2 = 00000010  after reversal is 01000000 = 64
3 = 00000011  after reversal is 11000000 = 192

... 这样,如果你需要N种不同的颜色,你只需要取前N个数字,把它们倒过来,你就能得到尽可能多的距离点(因为N是2的幂),同时保持序列的每个前缀都有很大不同。

在我的用例中,这是一个重要的目标,因为我有一个图表,其中颜色是根据这种颜色所覆盖的区域进行排序的。我希望图表中最大的区域具有较大的对比度,并且我对一些小区域使用与前十名相似的颜色也没有问题,因为读者通过观察区域就可以很明显地看出哪个是哪个。

这在MATLAB中是微不足道的(有一个hsv命令):

cmap = hsv(number_of_colors)

上面有很多非常好的答案,但如果有人正在寻找一个快速的python解决方案,那么提到python包distinctify可能会很有用。它是pypi提供的一个轻量级包,使用起来非常简单:

from distinctipy import distinctipy

colors = distinctipy.get_colors(12)

print(colors)

# display the colours
distinctipy.color_swatch(colors)

它返回一个rgb元组列表

[(0, 1, 0), (1, 0, 1), (0, 0.5, 1), (1, 0.5, 0), (0.5, 0.75, 0.5), (0.4552518132842178, 0.12660764790179446, 0.5467915225460569), (1, 0, 0), (0.12076092516775849, 0.9942188027771208, 0.9239958090462229), (0.254747094970068, 0.4768020779917903, 0.02444859177890535), (0.7854526395841417, 0.48630704929211144, 0.9902480906347156), (0, 0, 1), (1, 1, 0)]

此外,它还有一些额外的功能,比如生成不同于现有颜色列表的颜色。