I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

当前回答

对于Python用户来说,seaborn非常简洁:

>>> import seaborn as sns
>>> sns.color_palette(n_colors=4)

它返回RGB元组列表:

[(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(1.0, 0.4980392156862745, 0.054901960784313725),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)]

其他回答

我们只需要一个RGB三联体对的范围,这些三联体之间的距离最大。

我们可以定义一个简单的线性渐变,然后调整渐变的大小以获得所需的颜色数量。

在python中:

from skimage.transform import resize
import numpy as np
def distinguishable_colors(n, shuffle = True, 
                           sinusoidal = False,
                           oscillate_tone = False): 
    ramp = ([1, 0, 0],[1,1,0],[0,1,0],[0,0,1], [1,0,1]) if n>3 else ([1,0,0], [0,1,0],[0,0,1])
    
    coltrio = np.vstack(ramp)
    
    colmap = np.round(resize(coltrio, [n,3], preserve_range=True, 
                             order = 1 if n>3 else 3
                             , mode = 'wrap'),3)
    
    if sinusoidal: colmap = np.sin(colmap*np.pi/2)
    
    colmap = [colmap[x,] for x  in range(colmap.shape[0])]
    
    if oscillate_tone:
        oscillate = [0,1]*round(len(colmap)/2+.5)
        oscillate = [np.array([osc,osc,osc]) for osc in oscillate]
        colmap = [.8*colmap[x] + .2*oscillate[x] for x in range(len(colmap))]
    
    #Whether to shuffle the output colors
    if shuffle:
        random.seed(1)
        random.shuffle(colmap)
        
    return colmap

上面有很多非常好的答案,但如果有人正在寻找一个快速的python解决方案,那么提到python包distinctify可能会很有用。它是pypi提供的一个轻量级包,使用起来非常简单:

from distinctipy import distinctipy

colors = distinctipy.get_colors(12)

print(colors)

# display the colours
distinctipy.color_swatch(colors)

它返回一个rgb元组列表

[(0, 1, 0), (1, 0, 1), (0, 0.5, 1), (1, 0.5, 0), (0.5, 0.75, 0.5), (0.4552518132842178, 0.12660764790179446, 0.5467915225460569), (1, 0, 0), (0.12076092516775849, 0.9942188027771208, 0.9239958090462229), (0.254747094970068, 0.4768020779917903, 0.02444859177890535), (0.7854526395841417, 0.48630704929211144, 0.9902480906347156), (0, 0, 1), (1, 1, 0)]

此外,它还有一些额外的功能,比如生成不同于现有颜色列表的颜色。

这个OpenCV函数使用HSV颜色模型在0<=H<=360º周围生成n个均匀分布的颜色,最大S=1.0, V=1.0。函数在bgr_mat中输出BGR颜色:

void distributed_colors (int n, cv::Mat_<cv::Vec3f> & bgr_mat) {
  cv::Mat_<cv::Vec3f> hsv_mat(n,CV_32F,cv::Vec3f(0.0,1.0,1.0));
  double step = 360.0/n;
  double h= 0.0;
  cv::Vec3f value;
  for (int i=0;i<n;i++,h+=step) {
    value = hsv_mat.at<cv::Vec3f>(i);
    hsv_mat.at<cv::Vec3f>(i)[0] = h;
  }
  cv::cvtColor(hsv_mat, bgr_mat, CV_HSV2BGR);
  bgr_mat *= 255;
}

我认为这个简单的递归算法补充了公认的答案,以产生不同的色调值。我为hsv做了它,但也可以用于其他颜色空间。

它在循环中产生色调,在每个循环中尽可能彼此分离。

/**
 * 1st cycle: 0, 120, 240
 * 2nd cycle (+60): 60, 180, 300
 * 3th cycle (+30): 30, 150, 270, 90, 210, 330
 * 4th cycle (+15): 15, 135, 255, 75, 195, 315, 45, 165, 285, 105, 225, 345
 */
public static float recursiveHue(int n) {
    // if 3: alternates red, green, blue variations
    float firstCycle = 3;

    // First cycle
    if (n < firstCycle) {
        return n * 360f / firstCycle;
    }
    // Each cycle has as much values as all previous cycles summed (powers of 2)
    else {
        // floor of log base 2
        int numCycles = (int)Math.floor(Math.log(n / firstCycle) / Math.log(2));
        // divDown stores the larger power of 2 that is still lower than n
        int divDown = (int)(firstCycle * Math.pow(2, numCycles));
        // same hues than previous cycle, but summing an offset (half than previous cycle)
        return recursiveHue(n % divDown) + 180f / divDown;
    }
}

我在这里找不到这种算法。我希望这对你有所帮助,这是我在这里的第一篇文章。

我会尽量把饱和度和亮度调到最大,只关注色调。在我看来,H可以从0到255,然后绕圈。现在如果你想要两种对比色,你可以取这个环的对边,即0和128。如果你想要4种颜色,你需要取一些以圆周长度256的1/4为间隔的颜色,即0,64,128,192。当然,正如其他人建议的那样,当你需要N种颜色时,你可以用256/N将它们分开。

我想补充的是,用二进制数的反向表示来形成这个序列。看看这个:

0 = 00000000  after reversal is 00000000 = 0
1 = 00000001  after reversal is 10000000 = 128
2 = 00000010  after reversal is 01000000 = 64
3 = 00000011  after reversal is 11000000 = 192

... 这样,如果你需要N种不同的颜色,你只需要取前N个数字,把它们倒过来,你就能得到尽可能多的距离点(因为N是2的幂),同时保持序列的每个前缀都有很大不同。

在我的用例中,这是一个重要的目标,因为我有一个图表,其中颜色是根据这种颜色所覆盖的区域进行排序的。我希望图表中最大的区域具有较大的对比度,并且我对一些小区域使用与前十名相似的颜色也没有问题,因为读者通过观察区域就可以很明显地看出哪个是哪个。