I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

当前回答

我们只需要一个RGB三联体对的范围,这些三联体之间的距离最大。

我们可以定义一个简单的线性渐变,然后调整渐变的大小以获得所需的颜色数量。

在python中:

from skimage.transform import resize
import numpy as np
def distinguishable_colors(n, shuffle = True, 
                           sinusoidal = False,
                           oscillate_tone = False): 
    ramp = ([1, 0, 0],[1,1,0],[0,1,0],[0,0,1], [1,0,1]) if n>3 else ([1,0,0], [0,1,0],[0,0,1])
    
    coltrio = np.vstack(ramp)
    
    colmap = np.round(resize(coltrio, [n,3], preserve_range=True, 
                             order = 1 if n>3 else 3
                             , mode = 'wrap'),3)
    
    if sinusoidal: colmap = np.sin(colmap*np.pi/2)
    
    colmap = [colmap[x,] for x  in range(colmap.shape[0])]
    
    if oscillate_tone:
        oscillate = [0,1]*round(len(colmap)/2+.5)
        oscillate = [np.array([osc,osc,osc]) for osc in oscillate]
        colmap = [.8*colmap[x] + .2*oscillate[x] for x in range(len(colmap))]
    
    #Whether to shuffle the output colors
    if shuffle:
        random.seed(1)
        random.shuffle(colmap)
        
    return colmap

其他回答

如果N足够大,你会得到一些相似的颜色。世界上只有这么多。

为什么不把它们均匀地分布在光谱中,像这样:

IEnumerable<Color> CreateUniqueColors(int nColors)
{
    int subdivision = (int)Math.Floor(Math.Pow(nColors, 1/3d));
    for(int r = 0; r < 255; r += subdivision)
        for(int g = 0; g < 255; g += subdivision)
            for(int b = 0; b < 255; b += subdivision)
                yield return Color.FromArgb(r, g, b);
}

如果您想混合序列,以便相似的颜色不在彼此旁边,您可能会打乱结果列表。

是我想得不够周全吗?

这个问题出现在相当多的SO讨论中:

生成独特颜色的算法 生成独特的颜色 在图形中生成明显不同的RGB颜色 如何为任意自然数n生成n种不同的颜色?

提出了不同的解决方案,但没有一个是最优的。幸运的是,科学来拯救我们

任意N

彩色显示分类图像(免费下载) 一个个性化地图着色的网络服务(免费下载,一个网络服务解决方案应该在下个月可用) 选择高对比度颜色集的算法(作者提供了一个免费的c++实现) 高对比度的颜色集(问题的第一个算法)

最后两本将通过大多数大学图书馆/代理免费提供。

N是有限且相对较小的

在这种情况下,可以使用列表解决方案。关于这个主题,有一篇非常有趣的文章是免费的:

《彩色字母表和彩色编码的局限性》

有几个颜色列表可以考虑:

Boynton列出了11种几乎不会被混淆的颜色(可在前一节的第一篇论文中找到) Kelly的22种最大对比度的颜色(可以在上面的论文中找到)

我还遇到了一个麻省理工学院学生的这个调色板。 最后,下面的链接在不同颜色系统/坐标之间的转换可能是有用的(例如,文章中的一些颜色没有在RGB中指定):

http://chem8.org/uch/space-55036-do-blog-id-5333.html https://metacpan.org/pod/Color::Library::Dictionary::NBS_ISCC 色彩理论:如何将孟塞尔HVC转换为RGB/HSB/HSL

对于Kelly和Boynton的列表,我已经将其转换为RGB(除了白色和黑色,这应该很明显)。一些c#代码:

public static ReadOnlyCollection<Color> KellysMaxContrastSet
{
    get { return _kellysMaxContrastSet.AsReadOnly(); }
}

private static readonly List<Color> _kellysMaxContrastSet = new List<Color>
{
    UIntToColor(0xFFFFB300), //Vivid Yellow
    UIntToColor(0xFF803E75), //Strong Purple
    UIntToColor(0xFFFF6800), //Vivid Orange
    UIntToColor(0xFFA6BDD7), //Very Light Blue
    UIntToColor(0xFFC10020), //Vivid Red
    UIntToColor(0xFFCEA262), //Grayish Yellow
    UIntToColor(0xFF817066), //Medium Gray

    //The following will not be good for people with defective color vision
    UIntToColor(0xFF007D34), //Vivid Green
    UIntToColor(0xFFF6768E), //Strong Purplish Pink
    UIntToColor(0xFF00538A), //Strong Blue
    UIntToColor(0xFFFF7A5C), //Strong Yellowish Pink
    UIntToColor(0xFF53377A), //Strong Violet
    UIntToColor(0xFFFF8E00), //Vivid Orange Yellow
    UIntToColor(0xFFB32851), //Strong Purplish Red
    UIntToColor(0xFFF4C800), //Vivid Greenish Yellow
    UIntToColor(0xFF7F180D), //Strong Reddish Brown
    UIntToColor(0xFF93AA00), //Vivid Yellowish Green
    UIntToColor(0xFF593315), //Deep Yellowish Brown
    UIntToColor(0xFFF13A13), //Vivid Reddish Orange
    UIntToColor(0xFF232C16), //Dark Olive Green
};

public static ReadOnlyCollection<Color> BoyntonOptimized
{
    get { return _boyntonOptimized.AsReadOnly(); }
}

private static readonly List<Color> _boyntonOptimized = new List<Color>
{
    Color.FromArgb(0, 0, 255),      //Blue
    Color.FromArgb(255, 0, 0),      //Red
    Color.FromArgb(0, 255, 0),      //Green
    Color.FromArgb(255, 255, 0),    //Yellow
    Color.FromArgb(255, 0, 255),    //Magenta
    Color.FromArgb(255, 128, 128),  //Pink
    Color.FromArgb(128, 128, 128),  //Gray
    Color.FromArgb(128, 0, 0),      //Brown
    Color.FromArgb(255, 128, 0),    //Orange
};

static public Color UIntToColor(uint color)
{
    var a = (byte)(color >> 24);
    var r = (byte)(color >> 16);
    var g = (byte)(color >> 8);
    var b = (byte)(color >> 0);
    return Color.FromArgb(a, r, g, b);
}

下面是十六进制和每通道8位的RGB值:

kelly_colors_hex = [
    0xFFB300, # Vivid Yellow
    0x803E75, # Strong Purple
    0xFF6800, # Vivid Orange
    0xA6BDD7, # Very Light Blue
    0xC10020, # Vivid Red
    0xCEA262, # Grayish Yellow
    0x817066, # Medium Gray

    # The following don't work well for people with defective color vision
    0x007D34, # Vivid Green
    0xF6768E, # Strong Purplish Pink
    0x00538A, # Strong Blue
    0xFF7A5C, # Strong Yellowish Pink
    0x53377A, # Strong Violet
    0xFF8E00, # Vivid Orange Yellow
    0xB32851, # Strong Purplish Red
    0xF4C800, # Vivid Greenish Yellow
    0x7F180D, # Strong Reddish Brown
    0x93AA00, # Vivid Yellowish Green
    0x593315, # Deep Yellowish Brown
    0xF13A13, # Vivid Reddish Orange
    0x232C16, # Dark Olive Green
    ]

kelly_colors = dict(vivid_yellow=(255, 179, 0),
                    strong_purple=(128, 62, 117),
                    vivid_orange=(255, 104, 0),
                    very_light_blue=(166, 189, 215),
                    vivid_red=(193, 0, 32),
                    grayish_yellow=(206, 162, 98),
                    medium_gray=(129, 112, 102),

                    # these aren't good for people with defective color vision:
                    vivid_green=(0, 125, 52),
                    strong_purplish_pink=(246, 118, 142),
                    strong_blue=(0, 83, 138),
                    strong_yellowish_pink=(255, 122, 92),
                    strong_violet=(83, 55, 122),
                    vivid_orange_yellow=(255, 142, 0),
                    strong_purplish_red=(179, 40, 81),
                    vivid_greenish_yellow=(244, 200, 0),
                    strong_reddish_brown=(127, 24, 13),
                    vivid_yellowish_green=(147, 170, 0),
                    deep_yellowish_brown=(89, 51, 21),
                    vivid_reddish_orange=(241, 58, 19),
                    dark_olive_green=(35, 44, 22))

对于所有Java开发人员,以下是JavaFX的颜色:

// Don't forget to import javafx.scene.paint.Color;

private static final Color[] KELLY_COLORS = {
    Color.web("0xFFB300"),    // Vivid Yellow
    Color.web("0x803E75"),    // Strong Purple
    Color.web("0xFF6800"),    // Vivid Orange
    Color.web("0xA6BDD7"),    // Very Light Blue
    Color.web("0xC10020"),    // Vivid Red
    Color.web("0xCEA262"),    // Grayish Yellow
    Color.web("0x817066"),    // Medium Gray

    Color.web("0x007D34"),    // Vivid Green
    Color.web("0xF6768E"),    // Strong Purplish Pink
    Color.web("0x00538A"),    // Strong Blue
    Color.web("0xFF7A5C"),    // Strong Yellowish Pink
    Color.web("0x53377A"),    // Strong Violet
    Color.web("0xFF8E00"),    // Vivid Orange Yellow
    Color.web("0xB32851"),    // Strong Purplish Red
    Color.web("0xF4C800"),    // Vivid Greenish Yellow
    Color.web("0x7F180D"),    // Strong Reddish Brown
    Color.web("0x93AA00"),    // Vivid Yellowish Green
    Color.web("0x593315"),    // Deep Yellowish Brown
    Color.web("0xF13A13"),    // Vivid Reddish Orange
    Color.web("0x232C16"),    // Dark Olive Green
};

以下是根据上面的顺序未排序的凯利颜色。

以下是按色调排序的方凯利颜色(注意一些黄色的对比不是很明显)

对于Python用户来说,seaborn非常简洁:

>>> import seaborn as sns
>>> sns.color_palette(n_colors=4)

它返回RGB元组列表:

[(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(1.0, 0.4980392156862745, 0.054901960784313725),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)]

您可以使用HSL颜色模型来创建颜色。

如果你想要的只是不同的色调(可能),以及亮度或饱和度的轻微变化,你可以像这样分配色调:

// assumes hue [0, 360), saturation [0, 100), lightness [0, 100)

for(i = 0; i < 360; i += 360 / num_colors) {
    HSLColor c;
    c.hue = i;
    c.saturation = 90 + randf() * 10;
    c.lightness = 50 + randf() * 10;

    addColor(c);
}

为了子孙后代,我在这里添加了Python中公认的答案。

import numpy as np
import colorsys

def _get_colors(num_colors):
    colors=[]
    for i in np.arange(0., 360., 360. / num_colors):
        hue = i/360.
        lightness = (50 + np.random.rand() * 10)/100.
        saturation = (90 + np.random.rand() * 10)/100.
        colors.append(colorsys.hls_to_rgb(hue, lightness, saturation))
    return colors