I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

当前回答

我为R写了一个名为qualpalr的包,它是专门为此目的设计的。我建议你看看小插图,看看它是如何工作的,但我会尽量总结要点。

qualpalr在HSL颜色空间(前面在这个线程中描述过)中获取一个颜色规范,将其投射到DIN99d颜色空间(感知上是均匀的),并找到使它们之间的最小距离最大化的n。

# Create a palette of 4 colors of hues from 0 to 360, saturations between
# 0.1 and 0.5, and lightness from 0.6 to 0.85
pal <- qualpal(n = 4, list(h = c(0, 360), s = c(0.1, 0.5), l = c(0.6, 0.85)))

# Look at the colors in hex format
pal$hex
#> [1] "#6F75CE" "#CC6B76" "#CAC16A" "#76D0D0"

# Create a palette using one of the predefined color subspaces
pal2 <- qualpal(n = 4, colorspace = "pretty")

# Distance matrix of the DIN99d color differences
pal2$de_DIN99d
#>        #69A3CC #6ECC6E #CA6BC4
#> 6ECC6E      22                
#> CA6BC4      21      30        
#> CD976B      24      21      21

plot(pal2)

其他回答

如果N足够大,你会得到一些相似的颜色。世界上只有这么多。

为什么不把它们均匀地分布在光谱中,像这样:

IEnumerable<Color> CreateUniqueColors(int nColors)
{
    int subdivision = (int)Math.Floor(Math.Pow(nColors, 1/3d));
    for(int r = 0; r < 255; r += subdivision)
        for(int g = 0; g < 255; g += subdivision)
            for(int b = 0; b < 255; b += subdivision)
                yield return Color.FromArgb(r, g, b);
}

如果您想混合序列,以便相似的颜色不在彼此旁边,您可能会打乱结果列表。

是我想得不够周全吗?

每个人似乎都忽略了非常有用的YUV颜色空间的存在,它被设计用来表示人类视觉系统中可感知的颜色差异。YUV中的距离代表人类感知的差异。我需要这个功能的MagicCube4D实现4维魔方和无限数量的其他4D扭曲谜题有任意数量的脸。

我的解决方案首先在YUV中选择随机点,然后迭代分解最接近的两个点,在返回结果时只转换为RGB。方法是O(n^3),但对于小数字或可以缓存的数字来说,这并不重要。它当然可以变得更有效,但结果似乎很好。

该函数允许亮度阈值的可选规范,以不产生任何成分比给定量更亮或更暗的颜色。IE,你可能不希望值接近黑色或白色。当产生的颜色将被用作基础色,然后通过光照、分层、透明度等进行阴影处理,并且必须仍然与基础色不同时,这是有用的。

import java.awt.Color;
import java.util.Random;

/**
 * Contains a method to generate N visually distinct colors and helper methods.
 * 
 * @author Melinda Green
 */
public class ColorUtils {
    private ColorUtils() {} // To disallow instantiation.
    private final static float
        U_OFF = .436f,
        V_OFF = .615f;
    private static final long RAND_SEED = 0;
    private static Random rand = new Random(RAND_SEED);    

    /*
     * Returns an array of ncolors RGB triplets such that each is as unique from the rest as possible
     * and each color has at least one component greater than minComponent and one less than maxComponent.
     * Use min == 1 and max == 0 to include the full RGB color range.
     * 
     * Warning: O N^2 algorithm blows up fast for more than 100 colors.
     */
    public static Color[] generateVisuallyDistinctColors(int ncolors, float minComponent, float maxComponent) {
        rand.setSeed(RAND_SEED); // So that we get consistent results for each combination of inputs

        float[][] yuv = new float[ncolors][3];

        // initialize array with random colors
        for(int got = 0; got < ncolors;) {
            System.arraycopy(randYUVinRGBRange(minComponent, maxComponent), 0, yuv[got++], 0, 3);
        }
        // continually break up the worst-fit color pair until we get tired of searching
        for(int c = 0; c < ncolors * 1000; c++) {
            float worst = 8888;
            int worstID = 0;
            for(int i = 1; i < yuv.length; i++) {
                for(int j = 0; j < i; j++) {
                    float dist = sqrdist(yuv[i], yuv[j]);
                    if(dist < worst) {
                        worst = dist;
                        worstID = i;
                    }
                }
            }
            float[] best = randYUVBetterThan(worst, minComponent, maxComponent, yuv);
            if(best == null)
                break;
            else
                yuv[worstID] = best;
        }

        Color[] rgbs = new Color[yuv.length];
        for(int i = 0; i < yuv.length; i++) {
            float[] rgb = new float[3];
            yuv2rgb(yuv[i][0], yuv[i][1], yuv[i][2], rgb);
            rgbs[i] = new Color(rgb[0], rgb[1], rgb[2]);
            //System.out.println(rgb[i][0] + "\t" + rgb[i][1] + "\t" + rgb[i][2]);
        }

        return rgbs;
    }

    public static void hsv2rgb(float h, float s, float v, float[] rgb) {
        // H is given on [0->6] or -1. S and V are given on [0->1]. 
        // RGB are each returned on [0->1]. 
        float m, n, f;
        int i;

        float[] hsv = new float[3];

        hsv[0] = h;
        hsv[1] = s;
        hsv[2] = v;
        System.out.println("H: " + h + " S: " + s + " V:" + v);
        if(hsv[0] == -1) {
            rgb[0] = rgb[1] = rgb[2] = hsv[2];
            return;
        }
        i = (int) (Math.floor(hsv[0]));
        f = hsv[0] - i;
        if(i % 2 == 0)
            f = 1 - f; // if i is even 
        m = hsv[2] * (1 - hsv[1]);
        n = hsv[2] * (1 - hsv[1] * f);
        switch(i) {
            case 6:
            case 0:
                rgb[0] = hsv[2];
                rgb[1] = n;
                rgb[2] = m;
                break;
            case 1:
                rgb[0] = n;
                rgb[1] = hsv[2];
                rgb[2] = m;
                break;
            case 2:
                rgb[0] = m;
                rgb[1] = hsv[2];
                rgb[2] = n;
                break;
            case 3:
                rgb[0] = m;
                rgb[1] = n;
                rgb[2] = hsv[2];
                break;
            case 4:
                rgb[0] = n;
                rgb[1] = m;
                rgb[2] = hsv[2];
                break;
            case 5:
                rgb[0] = hsv[2];
                rgb[1] = m;
                rgb[2] = n;
                break;
        }
    }


    // From http://en.wikipedia.org/wiki/YUV#Mathematical_derivations_and_formulas
    public static void yuv2rgb(float y, float u, float v, float[] rgb) {
        rgb[0] = 1 * y + 0 * u + 1.13983f * v;
        rgb[1] = 1 * y + -.39465f * u + -.58060f * v;
        rgb[2] = 1 * y + 2.03211f * u + 0 * v;
    }

    public static void rgb2yuv(float r, float g, float b, float[] yuv) {
        yuv[0] = .299f * r + .587f * g + .114f * b;
        yuv[1] = -.14713f * r + -.28886f * g + .436f * b;
        yuv[2] = .615f * r + -.51499f * g + -.10001f * b;
    }

    private static float[] randYUVinRGBRange(float minComponent, float maxComponent) {
        while(true) {
            float y = rand.nextFloat(); // * YFRAC + 1-YFRAC);
            float u = rand.nextFloat() * 2 * U_OFF - U_OFF;
            float v = rand.nextFloat() * 2 * V_OFF - V_OFF;
            float[] rgb = new float[3];
            yuv2rgb(y, u, v, rgb);
            float r = rgb[0], g = rgb[1], b = rgb[2];
            if(0 <= r && r <= 1 &&
                0 <= g && g <= 1 &&
                0 <= b && b <= 1 &&
                (r > minComponent || g > minComponent || b > minComponent) && // don't want all dark components
                (r < maxComponent || g < maxComponent || b < maxComponent)) // don't want all light components

                return new float[]{y, u, v};
        }
    }

    private static float sqrdist(float[] a, float[] b) {
        float sum = 0;
        for(int i = 0; i < a.length; i++) {
            float diff = a[i] - b[i];
            sum += diff * diff;
        }
        return sum;
    }

    private static double worstFit(Color[] colors) {
        float worst = 8888;
        float[] a = new float[3], b = new float[3];
        for(int i = 1; i < colors.length; i++) {
            colors[i].getColorComponents(a);
            for(int j = 0; j < i; j++) {
                colors[j].getColorComponents(b);
                float dist = sqrdist(a, b);
                if(dist < worst) {
                    worst = dist;
                }
            }
        }
        return Math.sqrt(worst);
    }

    private static float[] randYUVBetterThan(float bestDistSqrd, float minComponent, float maxComponent, float[][] in) {
        for(int attempt = 1; attempt < 100 * in.length; attempt++) {
            float[] candidate = randYUVinRGBRange(minComponent, maxComponent);
            boolean good = true;
            for(int i = 0; i < in.length; i++)
                if(sqrdist(candidate, in[i]) < bestDistSqrd)
                    good = false;
            if(good)
                return candidate;
        }
        return null; // after a bunch of passes, couldn't find a candidate that beat the best.
    }


    /**
     * Simple example program.
     */
    public static void main(String[] args) {
        final int ncolors = 10;
        Color[] colors = generateVisuallyDistinctColors(ncolors, .8f, .3f);
        for(int i = 0; i < colors.length; i++) {
            System.out.println(colors[i].toString());
        }
        System.out.println("Worst fit color = " + worstFit(colors));
    }

}

我认为这个简单的递归算法补充了公认的答案,以产生不同的色调值。我为hsv做了它,但也可以用于其他颜色空间。

它在循环中产生色调,在每个循环中尽可能彼此分离。

/**
 * 1st cycle: 0, 120, 240
 * 2nd cycle (+60): 60, 180, 300
 * 3th cycle (+30): 30, 150, 270, 90, 210, 330
 * 4th cycle (+15): 15, 135, 255, 75, 195, 315, 45, 165, 285, 105, 225, 345
 */
public static float recursiveHue(int n) {
    // if 3: alternates red, green, blue variations
    float firstCycle = 3;

    // First cycle
    if (n < firstCycle) {
        return n * 360f / firstCycle;
    }
    // Each cycle has as much values as all previous cycles summed (powers of 2)
    else {
        // floor of log base 2
        int numCycles = (int)Math.floor(Math.log(n / firstCycle) / Math.log(2));
        // divDown stores the larger power of 2 that is still lower than n
        int divDown = (int)(firstCycle * Math.pow(2, numCycles));
        // same hues than previous cycle, but summing an offset (half than previous cycle)
        return recursiveHue(n % divDown) + 180f / divDown;
    }
}

我在这里找不到这种算法。我希望这对你有所帮助,这是我在这里的第一篇文章。

这产生了与Janus Troelsen的溶液相同的颜色。但是它使用的不是生成器,而是开始/停止语义。它也是完全向量化的。

import numpy as np
import numpy.typing as npt
import matplotlib.colors

def distinct_colors(start: int=0, stop: int=20) -> npt.NDArray[np.float64]:
    """Returns an array of distinct RGB colors, from an infinite sequence of colors
    """
    if stop <= start: # empty interval; return empty array
        return np.array([], dtype=np.float64)
    sat_values = [6/10]         # other tones could be added
    val_values = [8/10, 5/10]   # other tones could be added
    colors_per_hue_value = len(sat_values) * len(val_values)
    # Get the start and stop indices within the hue value stream that are needed
    # to achieve the requested range
    hstart = start // colors_per_hue_value
    hstop = (stop+colors_per_hue_value-1) // colors_per_hue_value
    # Zero will cause a singularity in the caluculation, so we will add the zero
    # afterwards
    prepend_zero = hstart==0 

    # Sequence (if hstart=1): 1,2,...,hstop-1
    i = np.arange(1 if prepend_zero else hstart, hstop) 
    # The following yields (if hstart is 1): 1/2,  1/4, 3/4,  1/8, 3/8, 5/8, 7/8,  
    # 1/16, 3/16, ... 
    hue_values = (2*i+1) / np.power(2,np.floor(np.log2(i*2))) - 1
    
    if prepend_zero:
        hue_values = np.concatenate(([0], hue_values))

    # Make all combinations of h, s and v values, as if done by a nested loop
    # in that order
    hsv = np.array(np.meshgrid(hue_values, sat_values, val_values, indexing='ij')
                    ).reshape((3,-1)).transpose()

    # Select the requested range (only the necessary values were computed but we
    # need to adjust the indices since start & stop are not necessarily multiples
    # of colors_per_hue_value)
    hsv = hsv[start % colors_per_hue_value : 
                start % colors_per_hue_value + stop - start]
    # Use the matplotlib vectorized function to convert hsv to rgb
    return matplotlib.colors.hsv_to_rgb(hsv)

样品:

from matplotlib.colors import ListedColormap
ListedColormap(distinct_colors(stop=20))

ListedColormap(distinct_colors(start=30, stop=50))

对于Python用户来说,seaborn非常简洁:

>>> import seaborn as sns
>>> sns.color_palette(n_colors=4)

它返回RGB元组列表:

[(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(1.0, 0.4980392156862745, 0.054901960784313725),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)]