I wrote the two methods below to automatically select N distinct colors. It works by defining a piecewise linear function on the RGB cube. The benefit of this is you can also get a progressive scale if that's what you want, but when N gets large the colors can start to look similar. I can also imagine evenly subdividing the RGB cube into a lattice and then drawing points. Does anyone know any other methods? I'm ruling out defining a list and then just cycling through it. I should also say I don't generally care if they clash or don't look nice, they just have to be visually distinct.

public static List<Color> pick(int num) {
    List<Color> colors = new ArrayList<Color>();
    if (num < 2)
        return colors;
    float dx = 1.0f / (float) (num - 1);
    for (int i = 0; i < num; i++) {
        colors.add(get(i * dx));
    }
    return colors;
}

public static Color get(float x) {
    float r = 0.0f;
    float g = 0.0f;
    float b = 1.0f;
    if (x >= 0.0f && x < 0.2f) {
        x = x / 0.2f;
        r = 0.0f;
        g = x;
        b = 1.0f;
    } else if (x >= 0.2f && x < 0.4f) {
        x = (x - 0.2f) / 0.2f;
        r = 0.0f;
        g = 1.0f;
        b = 1.0f - x;
    } else if (x >= 0.4f && x < 0.6f) {
        x = (x - 0.4f) / 0.2f;
        r = x;
        g = 1.0f;
        b = 0.0f;
    } else if (x >= 0.6f && x < 0.8f) {
        x = (x - 0.6f) / 0.2f;
        r = 1.0f;
        g = 1.0f - x;
        b = 0.0f;
    } else if (x >= 0.8f && x <= 1.0f) {
        x = (x - 0.8f) / 0.2f;
        r = 1.0f;
        g = 0.0f;
        b = x;
    }
    return new Color(r, g, b);
}

当前回答

我认为这个简单的递归算法补充了公认的答案,以产生不同的色调值。我为hsv做了它,但也可以用于其他颜色空间。

它在循环中产生色调,在每个循环中尽可能彼此分离。

/**
 * 1st cycle: 0, 120, 240
 * 2nd cycle (+60): 60, 180, 300
 * 3th cycle (+30): 30, 150, 270, 90, 210, 330
 * 4th cycle (+15): 15, 135, 255, 75, 195, 315, 45, 165, 285, 105, 225, 345
 */
public static float recursiveHue(int n) {
    // if 3: alternates red, green, blue variations
    float firstCycle = 3;

    // First cycle
    if (n < firstCycle) {
        return n * 360f / firstCycle;
    }
    // Each cycle has as much values as all previous cycles summed (powers of 2)
    else {
        // floor of log base 2
        int numCycles = (int)Math.floor(Math.log(n / firstCycle) / Math.log(2));
        // divDown stores the larger power of 2 that is still lower than n
        int divDown = (int)(firstCycle * Math.pow(2, numCycles));
        // same hues than previous cycle, but summing an offset (half than previous cycle)
        return recursiveHue(n % divDown) + 180f / divDown;
    }
}

我在这里找不到这种算法。我希望这对你有所帮助,这是我在这里的第一篇文章。

其他回答

就像Uri Cohen的答案,但它是一个生成器。首先要把颜色分开。确定的。

样品,左边颜色先:

#!/usr/bin/env python3
from typing import Iterable, Tuple
import colorsys
import itertools
from fractions import Fraction
from pprint import pprint

def zenos_dichotomy() -> Iterable[Fraction]:
    """
    http://en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%C2%B7_%C2%B7_%C2%B7
    """
    for k in itertools.count():
        yield Fraction(1,2**k)

def fracs() -> Iterable[Fraction]:
    """
    [Fraction(0, 1), Fraction(1, 2), Fraction(1, 4), Fraction(3, 4), Fraction(1, 8), Fraction(3, 8), Fraction(5, 8), Fraction(7, 8), Fraction(1, 16), Fraction(3, 16), ...]
    [0.0, 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, 0.0625, 0.1875, ...]
    """
    yield Fraction(0)
    for k in zenos_dichotomy():
        i = k.denominator # [1,2,4,8,16,...]
        for j in range(1,i,2):
            yield Fraction(j,i)

# can be used for the v in hsv to map linear values 0..1 to something that looks equidistant
# bias = lambda x: (math.sqrt(x/3)/Fraction(2,3)+Fraction(1,3))/Fraction(6,5)

HSVTuple = Tuple[Fraction, Fraction, Fraction]
RGBTuple = Tuple[float, float, float]

def hue_to_tones(h: Fraction) -> Iterable[HSVTuple]:
    for s in [Fraction(6,10)]: # optionally use range
        for v in [Fraction(8,10),Fraction(5,10)]: # could use range too
            yield (h, s, v) # use bias for v here if you use range

def hsv_to_rgb(x: HSVTuple) -> RGBTuple:
    return colorsys.hsv_to_rgb(*map(float, x))

flatten = itertools.chain.from_iterable

def hsvs() -> Iterable[HSVTuple]:
    return flatten(map(hue_to_tones, fracs()))

def rgbs() -> Iterable[RGBTuple]:
    return map(hsv_to_rgb, hsvs())

def rgb_to_css(x: RGBTuple) -> str:
    uint8tuple = map(lambda y: int(y*255), x)
    return "rgb({},{},{})".format(*uint8tuple)

def css_colors() -> Iterable[str]:
    return map(rgb_to_css, rgbs())

if __name__ == "__main__":
    # sample 100 colors in css format
    sample_colors = list(itertools.islice(css_colors(), 100))
    pprint(sample_colors)

我为R写了一个名为qualpalr的包,它是专门为此目的设计的。我建议你看看小插图,看看它是如何工作的,但我会尽量总结要点。

qualpalr在HSL颜色空间(前面在这个线程中描述过)中获取一个颜色规范,将其投射到DIN99d颜色空间(感知上是均匀的),并找到使它们之间的最小距离最大化的n。

# Create a palette of 4 colors of hues from 0 to 360, saturations between
# 0.1 and 0.5, and lightness from 0.6 to 0.85
pal <- qualpal(n = 4, list(h = c(0, 360), s = c(0.1, 0.5), l = c(0.6, 0.85)))

# Look at the colors in hex format
pal$hex
#> [1] "#6F75CE" "#CC6B76" "#CAC16A" "#76D0D0"

# Create a palette using one of the predefined color subspaces
pal2 <- qualpal(n = 4, colorspace = "pretty")

# Distance matrix of the DIN99d color differences
pal2$de_DIN99d
#>        #69A3CC #6ECC6E #CA6BC4
#> 6ECC6E      22                
#> CA6BC4      21      30        
#> CD976B      24      21      21

plot(pal2)

我有个主意。想象一个HSV气缸

定义亮度和饱和度的上限和下限。这在空间内定义了一个正方形的横截面环。

现在,在这个空间中随机散布N个点。

然后对它们应用迭代排斥算法,要么迭代次数固定,要么直到这些点稳定下来。

现在你应该有N个点,代表N种颜色,它们在你感兴趣的颜色空间中尽可能不同。

Hugo

Janus的回答,但更容易读懂。我还稍微调整了配色方案,并在你可以自己修改的地方做了标记

我已经把这个片段直接粘贴到一个jupyter笔记本。

import colorsys
import itertools
from fractions import Fraction
from IPython.display import HTML as html_print

def infinite_hues():
    yield Fraction(0)
    for k in itertools.count():
        i = 2**k # zenos_dichotomy
        for j in range(1,i,2):
            yield Fraction(j,i)

def hue_to_hsvs(h: Fraction):
    # tweak values to adjust scheme
    for s in [Fraction(6,10)]:
        for v in [Fraction(6,10), Fraction(9,10)]: 
            yield (h, s, v) 

def rgb_to_css(rgb) -> str:
    uint8tuple = map(lambda y: int(y*255), rgb)
    return "rgb({},{},{})".format(*uint8tuple)

def css_to_html(css):
    return f"<text style=background-color:{css}>&nbsp;&nbsp;&nbsp;&nbsp;</text>"

def show_colors(n=33):
    hues = infinite_hues()
    hsvs = itertools.chain.from_iterable(hue_to_hsvs(hue) for hue in hues)
    rgbs = (colorsys.hsv_to_rgb(*hsv) for hsv in hsvs)
    csss = (rgb_to_css(rgb) for rgb in rgbs)
    htmls = (css_to_html(css) for css in csss)

    myhtmls = itertools.islice(htmls, n)
    display(html_print("".join(myhtmls)))

show_colors()

我们只需要一个RGB三联体对的范围,这些三联体之间的距离最大。

我们可以定义一个简单的线性渐变,然后调整渐变的大小以获得所需的颜色数量。

在python中:

from skimage.transform import resize
import numpy as np
def distinguishable_colors(n, shuffle = True, 
                           sinusoidal = False,
                           oscillate_tone = False): 
    ramp = ([1, 0, 0],[1,1,0],[0,1,0],[0,0,1], [1,0,1]) if n>3 else ([1,0,0], [0,1,0],[0,0,1])
    
    coltrio = np.vstack(ramp)
    
    colmap = np.round(resize(coltrio, [n,3], preserve_range=True, 
                             order = 1 if n>3 else 3
                             , mode = 'wrap'),3)
    
    if sinusoidal: colmap = np.sin(colmap*np.pi/2)
    
    colmap = [colmap[x,] for x  in range(colmap.shape[0])]
    
    if oscillate_tone:
        oscillate = [0,1]*round(len(colmap)/2+.5)
        oscillate = [np.array([osc,osc,osc]) for osc in oscillate]
        colmap = [.8*colmap[x] + .2*oscillate[x] for x in range(len(colmap))]
    
    #Whether to shuffle the output colors
    if shuffle:
        random.seed(1)
        random.shuffle(colmap)
        
    return colmap