代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
我个人使用这个:
public static int myBitCount(long L){
int count = 0;
while (L != 0) {
count++;
L ^= L & -L;
}
return count;
}
其他回答
下面是功能优等递归解决方案,它是迄今为止最纯粹的一个(并且可以用于任何位长度!):
template<typename T>
int popcnt(T n)
{
if (n>0)
return n&1 + popcnt(n>>1);
return 0;
}
摘自《黑客的喜悦》第66页,图5-2
int pop(unsigned x)
{
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
return x & 0x0000003F;
}
执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。
我使用下面更直观的代码。
int countSetBits(int n) {
return !n ? 0 : 1 + countSetBits(n & (n-1));
}
逻辑:n & (n-1)重置n的最后一个集合位。
附注:我知道这不是O(1)解,尽管这是一个有趣的解。
这不是最快或最好的解决方案,但我以自己的方式发现了同样的问题,我开始反复思考。最后我意识到它可以这样做,如果你从数学方面得到这个问题,画一个图,然后你发现它是一个有周期部分的函数,然后你意识到周期之间的差异……所以你看:
unsigned int f(unsigned int x)
{
switch (x) {
case 0:
return 0;
case 1:
return 1;
case 2:
return 1;
case 3:
return 2;
default:
return f(x/4) + f(x%4);
}
}
我特别喜欢这个来自《财富》的例子:
#define BITCOUNT(x) (((BX_(x)+(BX_(x)>>4)) & 0x0F0F0F0F) % 255) #define BX_(x) ((x) - (((x)>>1)&0x77777777) - (((x)>>2)&0x33333333) - (((x)>>3)&0x11111111))
我最喜欢它,因为它太漂亮了!