在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
要寻找的一种模式是函数末尾的递归调用(所谓的尾部递归)。这很容易用一段时间来代替。例如,函数foo:
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
以调用foo结束。这可以替换为:
void foo(Node* node)
{
while(node != NULL)
{
// Do something with node...
foo(node->left);
node = node->right;
}
}
这消除了第二次递归调用。
其他回答
只是消磨时间……递归函数
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
可转换为
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
stack.push(node->right);
stack.push(node->left);
while(!stack.empty()) {
node1 = stack.pop();
if(node1 == NULL)
continue;
// Do something with node1...
stack.push(node1->right);
stack.push(node1->left);
}
}
想想那些真正需要堆栈的东西:
如果我们考虑递归的模式为:
if(task can be done directly) {
return result of doing task directly
} else {
split task into two or more parts
solve for each part (possibly by recursing)
return result constructed by combining these solutions
}
例如,经典的河内塔
if(the number of discs to move is 1) {
just move it
} else {
move n-1 discs to the spare peg
move the remaining disc to the target peg
move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}
这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:
place seed task on stack
while stack is not empty
take a task off the stack
if(task can be done directly) {
Do it
} else {
Split task into two or more parts
Place task to consolidate results on stack
Place each task on stack
}
}
对于《河内塔》来说,这就变成了:
stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
task = stack.pop();
if(task.size() = 1) {
just move it
} else {
stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
stack.push(new Task(1, task.from(), task.to(), task.spare()));
stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
}
}
在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。
这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。
This is an old question but I want to add a different aspect as a solution. I'm currently working on a project in which I used the flood fill algorithm using C#. Normally, I implemented this algorithm with recursion at first, but obviously, it caused a stack overflow. After that, I changed the method from recursion to iteration. Yes, It worked and I was no longer getting the stack overflow error. But this time, since I applied the flood fill method to very large structures, the program was going into an infinite loop. For this reason, it occurred to me that the function may have re-entered the places it had already visited. As a definitive solution to this, I decided to use a dictionary for visited points. If that node(x,y) has already been added to the stack structure for the first time, that node(x,y) will be saved in the dictionary as the key. Even if the same node is tried to be added again later, it won't be added to the stack structure because the node is already in the dictionary. Let's see on pseudo-code:
startNode = pos(x,y)
Stack stack = new Stack();
Dictionary visited<pos, bool> = new Dictionary();
stack.Push(startNode);
while(stack.count != 0){
currentNode = stack.Pop();
if "check currentNode if not available"
continue;
if "check if already handled"
continue;
else if "run if it must be wanted thing should be handled"
// make something with pos currentNode.X and currentNode.X
// then add its neighbor nodes to the stack to iterate
// but at first check if it has already been visited.
if(!visited.Contains(pos(x-1,y)))
visited[pos(x-1,y)] = true;
stack.Push(pos(x-1,y));
if(!visited.Contains(pos(x+1,y)))
...
if(!visited.Contains(pos(x,y+1)))
...
if(!visited.Contains(pos(x,y-1)))
...
}
在谷歌中搜索“延续传递样式”。有一个转换为尾部递归样式的一般过程;还有一个将尾部递归函数转换为循环的通用过程。
一个被关闭为这个问题的副本的问题有一个非常特定的数据结构:
节点结构如下:
typedef struct {
int32_t type;
int32_t valueint;
double valuedouble;
struct cNODE *next;
struct cNODE *prev;
struct cNODE *child;
} cNODE;
递归删除函数如下所示:
void cNODE_Delete(cNODE *c) {
cNODE*next;
while (c) {
next=c->next;
if (c->child) {
cNODE_Delete(c->child)
}
free(c);
c=next;
}
}
一般来说,对于多次(甚至一次)调用自身的递归函数,避免使用堆栈并不总是可能的。然而,对于这种特殊的结构,这是可能的。其思想是将所有节点平展为单个列表。这是通过将当前节点的子节点放在顶部行列表的末尾来实现的。
void cNODE_Delete (cNODE *c) {
cNODE *tmp, *last = c;
while (c) {
while (last->next) {
last = last->next; /* find last */
}
if ((tmp = c->child)) {
c->child = NULL; /* append child to last */
last->next = tmp;
tmp->prev = last;
}
tmp = c->next; /* remove current */
free(c);
c = tmp;
}
}
这种技术可以应用于任何可以简化为具有确定性拓扑顺序的DAG的数据链接结构。当前节点子节点被重新排列,以便最后一个子节点采用所有其他子节点。然后可以删除当前节点,然后遍历可以迭代到剩余的子节点。