在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

努力使你的递归调用尾部递归(递归的最后一个语句是递归调用)。一旦你有了它,将它转换为迭代通常是相当容易的。

其他回答

似乎没有人指出递归函数在主体中调用自己超过一次的位置,并处理返回递归中的特定点(即不是原始递归)。据说每一个递归都可以转化为迭代,所以这似乎是可能的。

我刚刚想出了一个如何做到这一点的c#示例。假设您有以下递归函数,它的作用类似于poststorder遍历,AbcTreeNode是一个带有指针a、b、c的3元树。

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

迭代解:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }

一个被关闭为这个问题的副本的问题有一个非常特定的数据结构:

节点结构如下:

typedef struct {
    int32_t type;
    int32_t valueint;
    double  valuedouble;
    struct  cNODE *next;
    struct  cNODE *prev;
    struct  cNODE *child;
} cNODE;

递归删除函数如下所示:

void cNODE_Delete(cNODE *c) {
    cNODE*next;
    while (c) {
        next=c->next;
        if (c->child) { 
          cNODE_Delete(c->child)
        }
        free(c);
        c=next;
    }
}

一般来说,对于多次(甚至一次)调用自身的递归函数,避免使用堆栈并不总是可能的。然而,对于这种特殊的结构,这是可能的。其思想是将所有节点平展为单个列表。这是通过将当前节点的子节点放在顶部行列表的末尾来实现的。

void cNODE_Delete (cNODE *c) {
    cNODE *tmp, *last = c;
    while (c) {
        while (last->next) {
            last = last->next;   /* find last */
        }
        if ((tmp = c->child)) {
            c->child = NULL;     /* append child to last */
            last->next = tmp;
            tmp->prev = last;
        }
        tmp = c->next;           /* remove current */
        free(c);
        c = tmp;
    }
}

这种技术可以应用于任何可以简化为具有确定性拓扑顺序的DAG的数据链接结构。当前节点子节点被重新排列,以便最后一个子节点采用所有其他子节点。然后可以删除当前节点,然后遍历可以迭代到剩余的子节点。

堆栈和递归消除文章抓住了将堆栈框架外部化到堆上的思想,但没有提供直接和可重复的转换方法。下面是一个。

在转换为迭代代码时,必须意识到递归调用可能发生在任意深度的代码块中。它不仅是参数,而且是返回到仍然要执行的逻辑的点,以及参与后续条件的变量的状态,这很重要。下面是一种转换为迭代代码的非常简单的方法。

考虑下面的递归代码:

struct tnode
{
    tnode(int n) : data(n), left(0), right(0) {}
    tnode *left, *right;
    int data;
};

void insertnode_recur(tnode *node, int num)
{
    if(node->data <= num)
    {
        if(node->right == NULL)
            node->right = new tnode(num);
        else
            insertnode(node->right, num);
    }
    else
    {
        if(node->left == NULL)
            node->left = new tnode(num);
        else
            insertnode(node->left, num);
    }    
}

迭代代码:

// Identify the stack variables that need to be preserved across stack 
// invocations, that is, across iterations and wrap them in an object
struct stackitem 
{ 
    stackitem(tnode *t, int n) : node(t), num(n), ra(0) {}
    tnode *node; int num;
    int ra; //to point of return
};

void insertnode_iter(tnode *node, int num) 
{
    vector<stackitem> v;
    //pushing a stackitem is equivalent to making a recursive call.
    v.push_back(stackitem(node, num));

    while(v.size()) 
    {
        // taking a modifiable reference to the stack item makes prepending 
        // 'si.' to auto variables in recursive logic suffice
        // e.g., instead of num, replace with si.num.
        stackitem &si = v.back(); 
        switch(si.ra)
        {
        // this jump simulates resuming execution after return from recursive 
        // call 
            case 1: goto ra1;
            case 2: goto ra2;
            default: break;
        } 

        if(si.node->data <= si.num)
        {
            if(si.node->right == NULL)
                si.node->right = new tnode(si.num);
            else
            {
                // replace a recursive call with below statements
                // (a) save return point, 
                // (b) push stack item with new stackitem, 
                // (c) continue statement to make loop pick up and start 
                //    processing new stack item, 
                // (d) a return point label
                // (e) optional semi-colon, if resume point is an end 
                // of a block.

                si.ra=1;
                v.push_back(stackitem(si.node->right, si.num));
                continue; 
ra1:            ;         
            }
        }
        else
        {
            if(si.node->left == NULL)
                si.node->left = new tnode(si.num);
            else
            {
                si.ra=2;                
                v.push_back(stackitem(si.node->left, si.num));
                continue;
ra2:            ;
            }
        }

        v.pop_back();
    }
}

请注意,代码的结构仍然保持忠于递归逻辑,并且修改是最小的,从而减少了错误的数量。为了便于比较,我用++和——标记了更改。除了v.push_back之外,大多数新插入的块对于任何转换的迭代逻辑都是通用的

void insertnode_iter(tnode *node, int num) 
{

+++++++++++++++++++++++++

    vector<stackitem> v;
    v.push_back(stackitem(node, num));

    while(v.size())
    {
        stackitem &si = v.back(); 
        switch(si.ra)
        {
            case 1: goto ra1;
            case 2: goto ra2;
            default: break;
        } 

------------------------

        if(si.node->data <= si.num)
        {
            if(si.node->right == NULL)
                si.node->right = new tnode(si.num);
            else
            {

+++++++++++++++++++++++++

                si.ra=1;
                v.push_back(stackitem(si.node->right, si.num));
                continue; 
ra1:            ;    

-------------------------

            }
        }
        else
        {
            if(si.node->left == NULL)
                si.node->left = new tnode(si.num);
            else
            {

+++++++++++++++++++++++++

                si.ra=2;                
                v.push_back(stackitem(si.node->left, si.num));
                continue;
ra2:            ;

-------------------------

            }
        }

+++++++++++++++++++++++++

        v.pop_back();
    }

-------------------------

}

一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):

// tail-recursive
int factorial (int n, int acc = 1)
{
  if (n == 1)
    return acc;
  else
    return factorial(n - 1, acc * n);
}

// iterative
int factorial (int n)
{
  int acc = 1;
  for (; n > 1; --n)
    acc *= n;
  return acc;
}

据我所知,我可能在代码中犯了一个错误,但想法是存在的。

想想那些真正需要堆栈的东西:

如果我们考虑递归的模式为:

if(task can be done directly) {
    return result of doing task directly
} else {
    split task into two or more parts
    solve for each part (possibly by recursing)
    return result constructed by combining these solutions
}

例如,经典的河内塔

if(the number of discs to move is 1) {
    just move it
} else {
    move n-1 discs to the spare peg
    move the remaining disc to the target peg
    move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}

这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:

place seed task on stack
while stack is not empty 
   take a task off the stack
   if(task can be done directly) {
      Do it
   } else {
      Split task into two or more parts
      Place task to consolidate results on stack
      Place each task on stack
   }
}

对于《河内塔》来说,这就变成了:

stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
    task = stack.pop();
    if(task.size() = 1) {
        just move it
    } else {
        stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
        stack.push(new Task(1, task.from(), task.to(), task.spare()));
        stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
    }
}

在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。

这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。