我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}

其他回答

struct Rect
{
    Rect(int x1, int x2, int y1, int y2)
    : x1(x1), x2(x2), y1(y1), y2(y2)
    {
        assert(x1 < x2);
        assert(y1 < y2);
    }

    int x1, x2, y1, y2;
};

bool
overlap(const Rect &r1, const Rect &r2)
{
    // The rectangles don't overlap if
    // one rectangle's minimum in some dimension 
    // is greater than the other's maximum in
    // that dimension.

    bool noOverlap = r1.x1 > r2.x2 ||
                     r2.x1 > r1.x2 ||
                     r1.y1 > r2.y2 ||
                     r2.y1 > r1.y2;

    return !noOverlap;
}

我已经实现了c#版本,它很容易转换为c++。

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}

这是来自《Java编程入门-综合版》中的练习3.28。该代码测试两个矩形是否缩进,一个矩形是否在另一个矩形内,一个矩形是否在另一个矩形外。如果这些条件都不满足,则两者重叠。

**3.28(几何:两个矩形)编写一个程序,提示用户进入 中心x, y坐标,宽度和高度的两个矩形,并确定 第二个矩形是在第一个矩形的内部还是与第一个矩形重叠,如图所示 如图3.9所示。测试您的程序以覆盖所有情况。 下面是示例运行:

输入r1的中心x坐标,y坐标,宽度和高度:2.5 4 2.5 43 输入r2的中心x坐标,y坐标,宽度和高度:1.5 5 0.5 3 R2在r1里面

输入r1的中心x坐标,y坐标,宽度和高度:1 2 3 5.5 输入r2的中心x坐标,y坐标,宽度和高度:3 4 4.5 5 R2和r1重叠

输入r1的中心x坐标,y坐标,宽度和高度:1 2 3 3 输入r2的中心x坐标,y坐标,宽度和高度:40 45 3 2 R2不与r1重叠

import java.util.Scanner;

public class ProgrammingEx3_28 {
public static void main(String[] args) {
    Scanner input = new Scanner(System.in);

    System.out
            .print("Enter r1's center x-, y-coordinates, width, and height:");
    double x1 = input.nextDouble();
    double y1 = input.nextDouble();
    double w1 = input.nextDouble();
    double h1 = input.nextDouble();
    w1 = w1 / 2;
    h1 = h1 / 2;
    System.out
            .print("Enter r2's center x-, y-coordinates, width, and height:");
    double x2 = input.nextDouble();
    double y2 = input.nextDouble();
    double w2 = input.nextDouble();
    double h2 = input.nextDouble();
    w2 = w2 / 2;
    h2 = h2 / 2;

    // Calculating range of r1 and r2
    double x1max = x1 + w1;
    double y1max = y1 + h1;
    double x1min = x1 - w1;
    double y1min = y1 - h1;
    double x2max = x2 + w2;
    double y2max = y2 + h2;
    double x2min = x2 - w2;
    double y2min = y2 - h2;

    if (x1max == x2max && x1min == x2min && y1max == y2max
            && y1min == y2min) {
        // Check if the two are identicle
        System.out.print("r1 and r2 are indentical");

    } else if (x1max <= x2max && x1min >= x2min && y1max <= y2max
            && y1min >= y2min) {
        // Check if r1 is in r2
        System.out.print("r1 is inside r2");
    } else if (x2max <= x1max && x2min >= x1min && y2max <= y1max
            && y2min >= y1min) {
        // Check if r2 is in r1
        System.out.print("r2 is inside r1");
    } else if (x1max < x2min || x1min > x2max || y1max < y2min
            || y2min > y1max) {
        // Check if the two overlap
        System.out.print("r2 does not overlaps r1");
    } else {
        System.out.print("r2 overlaps r1");
    }

}
}

这是一个用c++快速检查两个矩形是否重叠的方法:

return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
    && std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

它的工作原理是计算相交矩形的左右边界,然后比较它们:如果右边界等于或小于左边界,这意味着交点是空的,因此矩形不重叠;否则,它将再次尝试顶部和底部边框。

What is the advantage of this method over the conventional alternative of 4 comparisons? It's about how modern processors are designed. They have something called branch prediction, which works well when the result of a comparison is always the same, but have a huge performance penalty otherwise. However, in the absence of branch instructions, the CPU performs quite well. By calculating the borders of the intersection instead of having two separate checks for each axis, we're saving two branches, one per pair.

如果第一个比较有很高的错误几率,那么四个比较方法可能比这个方法更好。但这是非常罕见的,因为这意味着第二个矩形通常在第一个矩形的左边,而不是在右边或重叠;大多数情况下,您需要检查第一个矩形的两侧,这通常会使分支预测的优势失效。

根据矩形的预期分布,这种方法还可以进一步改进:

If you expect the checked rectangles to be predominantly to the left or right of each other, then the method above works best. This is probably the case, for example, when you're using the rectangle intersection to check collisions for a game, where the game objects are predominantly distributed horizontally (e.g. a SuperMarioBros-like game). If you expect the checked rectangles to be predominantly to the top or bottom of each other, e.g. in an Icy Tower type of game, then checking top/bottom first and left/right last will probably be faster:

return std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom)
    && std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right);

然而,如果相交的概率接近于不相交的概率,那么最好有一个完全无分支的替代方案:

return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
     & std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

(注意&&变成了一个&)

如果矩形重叠,那么重叠面积将大于零。现在让我们求出重叠区域:

如果它们重叠,那么overlap-rect的左边缘将是max(r1。X1, r2.x1)和右边将是min(r1。x2, r2.x2)。所以重叠的长度是min(r1)X2 r2 X2 - max(r1。x1, r2.x1)

所以面积是:

area = (max(r1.x1, r2.x1) - min(r1.x2, r2.x2)) * (max(r1.y1, r2.y1) - min(r1.y2, r2.y2))

如果area = 0,则它们不重叠。

很简单,不是吗?