我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}

其他回答

问你自己一个相反的问题:我如何确定两个矩形是否完全不相交?显然,矩形a完全在矩形B的左边不相交。如果A完全在右边。同样,如果A完全高于B或完全低于B,在任何其他情况下,A和B相交。

以下内容可能有bug,但我对算法相当有信心:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}

我已经实现了c#版本,它很容易转换为c++。

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}

更容易检查一个矩形是否完全在另一个矩形之外,如果它是其中之一

在左边……

(r1.x + r1.width < r2.x)

或者在右边…

(r1.x > r2.x + r2.width)

或者在上面…

(r1.y + r1.height < r2.y)

或者在底部…

(r1.y > r2.y + r2.height)

对于第二个矩形,它不可能与它碰撞。因此,要有一个返回布尔值的函数,表示矩形是否碰撞,我们只需通过逻辑or组合这些条件,并对结果求反:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

如果只在触摸时得到阳性结果,我们可以通过“<=”和“>=”来更改“<”和“>”。

对于那些使用中心点和一半大小的矩形数据的人,而不是典型的x,y,w,h或x0,y0,x1,x1,下面是你可以这样做:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}
struct Rect
{
    Rect(int x1, int x2, int y1, int y2)
    : x1(x1), x2(x2), y1(y1), y2(y2)
    {
        assert(x1 < x2);
        assert(y1 < y2);
    }

    int x1, x2, y1, y2;
};

bool
overlap(const Rect &r1, const Rect &r2)
{
    // The rectangles don't overlap if
    // one rectangle's minimum in some dimension 
    // is greater than the other's maximum in
    // that dimension.

    bool noOverlap = r1.x1 > r2.x2 ||
                     r2.x1 > r1.x2 ||
                     r1.y1 > r2.y2 ||
                     r2.y1 > r1.y2;

    return !noOverlap;
}